您的位置:首页 > 其它

第十一周项目一3由顺序存储结构转为二叉链存储结构

2016-11-10 11:12 295 查看
问题代码:
/*Copyright(c)2016,烟台大学计算机学院
*All right reserved.
*文件名称:线索化二叉树.cpp
*作者:李玲
*完成日期;2016年11月10日
*版本号;v1.0
*问题描述:由顺序存储结构转为二叉链存储结构
*输入描述:二叉树左子树与右子树的值
*程序输出:对应真正的二叉树
*/
#include <stdio.h>
#include <string.h>
#include "btree.h"
int main()
{
BTNode *b;
ElemType s[]="0ABCD#EF#G####################";
b=trans(s,1);
printf("b:");
DispBTNode(b);
printf("\n");
return 0;
}
#include <stdio.h>
#include <malloc.h>
#include "btree.h"
BTNode *trans(SqBTree a,int i)
{
BTNode *b;
if (i>N)
return(NULL);
if (a[i]=='#')
return(NULL);           //当节点不存在时返回NULL
b=(BTNode *)malloc(sizeof(BTNode)); //创建根节点
b->data=a[i];
b->lchild=trans(a,2*i);                 //递归创建左子树
b->rchild=trans(a,2*i+1);               //递归创建右子树
return(b);                              //返回根节点
}
BTNode *CRTree(char s[],int i,int j)
{
BTNode *p;
int k,plus=0,posi;
if (i==j)    //i和j相同,意味着只有一个字符,构造的是一个叶子节点
{
p=(BTNode *)malloc(sizeof(BTNode));   //分配存储空间
p->data=s[i];                         //值为s[i]
p->lchild=NULL;
p->rchild=NULL;
return p;
}
//以下为i!=j的情况
for (k=i; k<=j; k++)
if (s[k]=='+' || s[k]=='-')
{
plus++;
posi=k;              //最后一个+或-的位置
}
if (plus==0)                 //没有+或-的情况(因为若有+、-,前面必会执行plus++)
for (k=i; k<=j; k++)
if (s[k]=='*' || s[k]=='/')
{
plus++;
posi=k;
}
//以上的处理考虑了优先将+、-放到二叉树较高的层次上
//由于将来计算时,运用的是后序遍历的思路
//处于较低层的乘除会优先运算
//从而体现了“先乘除后加减”的运算法则
//创建一个分支节点,用检测到的运算符作为节点值
if (plus!=0)
{
p=(BTNode *)malloc(sizeof(BTNode));
p->data=s[posi];                //节点值是s[posi]
p->lchild=CRTree(s,i,posi-1);   //左子树由s[i]至s[posi-1]构成
p->rchild=CRTree(s,posi+1,j);   //右子树由s[poso+1]到s[j]构成
return p;
}
else       //若没有任何运算符,返回NULL
return NULL;
}

double Comp(BTNode *b)
{
double v1,v2;
if (b==NULL)
return 0;
if (b->lchild==NULL && b->rchild==NULL)  //叶子节点,应该是一个数字字符(本项目未考虑非法表达式)
return b->data-'0';    //叶子节点直接返回节点值,结点中保存的数字用的是字符形式,所以要-'0'
v1=Comp(b->lchild); //先计算左子树
v2=Comp(b->rchild); //再计算右子树
switch(b->data)     //将左、右子树运算的结果再进行运算,运用的是后序遍历的思路
{
case '+':
return v1+v2;
case '-':
return v1-v2;
case '*':
return v1*v2;
case '/':
if (v2!=0)
return v1/v2;
else
abort();
}
}
void CreateBTNode(BTNode *&b,char *str)     //由str串创建二叉链
{
BTNode *St[MaxSize],*p=NULL;
int top=-1,k,j=0;
char ch;
b=NULL;             //建立的二叉树初始时为空
ch=str[j];
while (ch!='\0')    //str未扫描完时循环
{
switch(ch)
{
case '(':
top++;
St[top]=p;
k=1;
break;      //为左节点
case ')':
top--;
break;
case ',':
k=2;
break;                          //为右节点
default:
p=(BTNode *)malloc(sizeof(BTNode));
p->data=ch;
p->lchild=p->rchild=NULL;
if (b==NULL)                    //p指向二叉树的根节点
b=p;
else                            //已建立二叉树根节点
{
switch(k)
{
case 1:
St[top]->lchild=p;
break;
case 2:
St[top]->rchild=p;
break;
}
}
}
j++;
ch=str[j];
}
}
BTNode *FindNode(BTNode *b,ElemType x)  //返回data域为x的节点指针
{
BTNode *p;
if (b==NULL)
return NULL;
else if (b->data==x)
return b;
else
{
p=FindNode(b->lchild,x);
if (p!=NULL)
return p;
else
return FindNode(b->rchild,x);
}
}
BTNode *LchildNode(BTNode *p)   //返回*p节点的左孩子节点指针
{
return p->lchild;
}
BTNode *RchildNode(BTNode *p)   //返回*p节点的右孩子节点指针
{
return p->rchild;
}
int BTNodeDepth(BTNode *b)  //求二叉树b的深度
{
int lchilddep,rchilddep;
if (b==NULL)
return(0);                          //空树的高度为0
else
{
lchilddep=BTNodeDepth(b->lchild);   //求左子树的高度为lchilddep
rchilddep=BTNodeDepth(b->rchild);   //求右子树的高度为rchilddep
return (lchilddep>rchilddep)? (lchilddep+1):(rchilddep+1);
}
}
void DispBTNode(BTNode *b)  //以括号表示法输出二叉树
{
if (b!=NULL)
{
printf("%c",b->data);
if (b->lchild!=NULL || b->rchild!=NULL)
{
printf("(");
DispBTNode(b->lchild);
if (b->rchild!=NULL) printf(",");
DispBTNode(b->rchild);
printf(")");
}
}
}
void DestroyBTNode(BTNode *&b)   //销毁二叉树
{
if (b!=NULL)
{
DestroyBTNode(b->lchild);
DestroyBTNode(b->rchild);
free(b);
}
}
#define MaxSize 100
typedef char ElemType;
#define N 30
typedef ElemType SqBTree
;
typedef struct node
{
ElemType data;              //数据元素
struct node *lchild;        //指向左孩子
struct node *rchild;        //指向右孩子
} BTNode;
void CreateBTNode(BTNode *&b,char *str);        //由str串创建二叉链
BTNode *FindNode(BTNode *b,ElemType x);     //返回data域为x的节点指针
BTNode *LchildNode(BTNode *p);  //返回*p节点的左孩子节点指针
BTNode *RchildNode(BTNode *p);  //返回*p节点的右孩子节点指针
int BTNodeDepth(BTNode *b); //求二叉树b的深度
void DispBTNode(BTNode *b); //以括号表示法输出二叉树
void DestroyBTNode(BTNode *&b);  //销毁二叉树
double Comp(BTNode *b);
BTNode *CRTree(char s[],int i,int j);
BTNode *trans(SqBTree a,int i);


运行结果



知识点总结:

把一个顺序存储的数据链进行层次遍历一样的逆访问,简称为逆层次遍历吧,按根左右的方式建立树,有则建立节点,无则消除节点。

学习心得

以后建立二叉树可以用这个程序直接输入就可以建立了。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: 
相关文章推荐