您的位置:首页 > 其它

第11周—项目1(2).3由顺序存储结构转为二叉链存储结构

2015-11-10 17:32 369 查看
问题描述及代码:

#ifndef BTREE_H_INCLUDED
#define BTREE_H_INCLUDED
/*
*烟台大学计控学院
*作    者:杨征
*完成日期:2015年11月9日
*问题描述:由顺序存储结构转为二叉链存储结构

*/
#endif // BTREE_H_INCLUDED


 (1)btree.h

#ifndef BTREE_H_INCLUDED
#define BTREE_H_INCLUDED
#define MaxSize 100
#define N 30
typedef char ElemType;
typedef ElemType SqBTree
;

typedef struct node
{
ElemType data; //数据元素
struct node *lchild; //指向左孩子
struct node *rchild; //指向右孩子
} BTNode;
void CreateBTNode(BTNode *&b,char *str); //由str串创建二叉链
BTNode *FindNode(BTNode *b,ElemType x); //返回data域为x的节点指针
BTNode *LchildNode(BTNode *p); //返回*p节点的左孩子节点指针
BTNode *RchildNode(BTNode *p); //返回*p节点的右孩子节点指针
int BTNodeDepth(BTNode *b); //求二叉树b的深度
void DispBTNode(BTNode *b); //以括号表示法输出二叉树
void DestroyBTNode(BTNode *&b); //销毁二叉树
BTNode *trans(SqBTree a,int i);

#endif // BTREE_H_INCLUDED
(2)btree.cpp
#include <stdio.h>
#include <malloc.h>
#include "btree.h"

void CreateBTNode(BTNode *&b,char *str) //由str串创建二叉链
{
BTNode *St[MaxSize],*p=NULL;
int top=-1,k,j=0;
char ch;
b=NULL; //建立的二叉树初始时为空
ch=str[j];
while (ch!='\0') //str未扫描完时循环
{
switch(ch)
{
case '(':
top++;
St[top]=p;
k=1;
break; //为左节点
case ')':
top--;
break;
case ',':
k=2;
break; //为右节点
default:
p=(BTNode *)malloc(sizeof(BTNode));
p->data=ch;
p->lchild=p->rchild=NULL;
if (b==NULL) //p指向二叉树的根节点
b=p;
else //已建立二叉树根节点
{
switch(k)
{
case 1:
St[top]->lchild=p;
break;
case 2:
St[top]->rchild=p;
break;
}
}
}
j++;
ch=str[j];
}
}
BTNode *FindNode(BTNode *b,ElemType x) //返回data域为x的节点指针
{
BTNode *p;
if (b==NULL)
return NULL;
else if (b->data==x)
return b;
else
{
p=FindNode(b->lchild,x);
if (p!=NULL)
return p;
else
return FindNode(b->rchild,x);
}
}
BTNode *LchildNode(BTNode *p) //返回*p节点的左孩子节点指针
{
return p->lchild;
}
BTNode *RchildNode(BTNode *p) //返回*p节点的右孩子节点指针
{
return p->rchild;
}
int BTNodeDepth(BTNode *b) //求二叉树b的深度
{
int lchilddep,rchilddep;
if (b==NULL)
return(0); //空树的高度为0
else
{
lchilddep=BTNodeDepth(b->lchild); //求左子树的高度为lchilddep
rchilddep=BTNodeDepth(b->rchild); //求右子树的高度为rchilddep
return (lchilddep>rchilddep)? (lchilddep+1):(rchilddep+1);
}
}
void DispBTNode(BTNode *b) //以括号表示法输出二叉树
{
if (b!=NULL)
{
printf("%c",b->data);
if (b->lchild!=NULL || b->rchild!=NULL)
{
printf("(");
DispBTNode(b->lchild);
if (b->rchild!=NULL) printf(",");
DispBTNode(b->rchild);
printf(")");
}
}
}
void DestroyBTNode(BTNode *&b) //销毁二叉树
{
if (b!=NULL)
{
DestroyBTNode(b->lchild);
DestroyBTNode(b->rchild);
free(b);
}
}
BTNode *trans(SqBTree a,int i)
{
BTNode *b;
if (i>N)
return(NULL);
if (a[i]=='#')
return(NULL); //当节点不存在时返回NULL
b=(BTNode *)malloc(sizeof(BTNode)); //创建根节点
b->data=a[i];
b->lchild=trans(a,2*i); //递归创建左子树
b->rchild=trans(a,2*i+1); //递归创建右子树
return(b); //返回根节点
}
(3)main.cpp
#include<stdio.h>
#include<string.h>
#include"btree.h"

int main()
{
BTNode *b;
ElemType s[]="0ABCD#EF#G####################";
b=trans(s,1);
printf("b:");
DispBTNode(b);
printf("\n");
return 0;
}


运行结果



知识点总结

按照存储结构来转换为二叉树

学习心得

逐渐在积累
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: