您的位置:首页 > 其它

算法导论第十六章

2020-07-19 04:50 99 查看

16.1

16.1-1

int c[n+1][n+1];
int b[n+1][n+1];
for (int i = 0; i <= n; i++)
{
for (int j = 0; j <= n; j++)
{
c[i][j] = -1;
b[i][j] = 0;
}
}
void ACTIVITY_SELECTOR(int *s, int *f, int *c, int *b, int i, int j)
{
if (c[i][j] != -1)    return;
int flag = 0;
for (int k = i+1; k < j; k++)
{
if (s[k] >= f[i] && e[k] <= s[j])   flag = 1;
}
if (!flag)
{
c[i][j] = 0;
}
for (int k = i+1; k < j; k++)
{
ACTIVITY_SELECTOR(s, f, c, i, k);
ACTIVITY_SELECTOR(s, f, c, k, j);
res = c[i][k] + c[k][j] + 1;
if (res > c[i][j])
{
b[i][j] = k;
c[i][j] = res;
}
}
return;
}

将递归式改为迭代式可得,时间复杂度为\(\Theta(n^3)\)

而贪心策略的结果为\(\Theta(n)\)

16.1-2

struct Activity
{
int s;
int f;
bool operator < (const activity &other)
{
if (s < other.s)    return true;
else return false;
}
}
vector<int> GREEDY_SELECTOR(vector<Activity> activity)
{
sort(activity.begin(), activity.end());
vector<int> res;
int k = activity.size()-1;
res.push_back(k);
for (int m = k-1; m >= 1; m--)
{
if (activity[m].f <= activity[k].s)
{
res.push_back(m);
k = m;
}
}
return res;
}
[/code]

证明:

​ 命题:对于任意非空子问题\(S_k\), 令\(a_m\)是\(S_k\)中开始时间最晚的活动。则\(a_m\)在\(S_k\)的某个最大兼容活动子集中。

​ 令\(A_k\)是\(S_k\)的一个最大兼容活动子集,且\(a_j\)是其中开始时间最晚的活动。若\(a_j = a_m\), 证毕。

​ 否则,令\(A_{k'}\) = (\(A_k\) - {\(a_j\)})||{\(a_m\)}(\(a_m开始时间晚于a_j\))

​ 由于\(A_k\)中活动不相交,所以\(A_{k'}\)中活动不相交。

​ 又\(|A_k| = |A_{k'}|\),

​ 所以\(A_{k'}\)也是\(S_k\)的一个最大兼容活动子集。

若贪心策略为选择持续时间最短者、最早开始者等,均不能保证\(A_{k'}\)兼容的性质

16.1-4

int *GREEDY_SOLUTION_ONE(int *s, int *f, bool *visited)
{
int n = s.length();
int a
;
for (int i = 1; i <= n; i++)
{
if (!visited[i])
{
a[0] = i;
break;
}
}
int cnt = 0;
int k = a[0];
for (int m = k+1; m <= n; m++)
{
if (s[m] >= f[k])
{
a[++cnt] = m;
k = m;
visited[m] = true;
}
}
return a;
}
int GREEDY_SOLUTION_ONE(int *s, int *f)
{
int n = s.length();
bool visited[n+1];
for (int i = 1; i <= n; i++)  visited[i] = false;
int cnt = 0;
while (n > 0)
{
int res
;
res = GREEDY_ACTIVITY_SELECTOR(s, f, visited);
int len = res.length();
for (int i = 0; i < len; i++)
{
visited[res[i]] = true;
}
n -= len;
cnt++;
}
return cnt;
}

贪心策略:找出子问题的最大兼容活动子集涂上相同的颜色。

16.1-5

在输入中添加哨兵:

\(activity = <a_0, a_1, ..., a_n, a_{n+1}>\)

其中\(a_0.start = 0, a_0.finish = 0\)

\(a_{n+1}.start\) = INT_MAX, \(a_{n+1}.finish\) = INT_MAX

#include <stdio.h>
#include <limits.h>
int n = s.length();
int _v[n+2][n+2];
int _e[n+2][n+2];
void solution(int *s, int *f, int *v)
{
for (int i = 0; i <= n; i++)
{
_v[i][i+1] = 0;
}
for (int l = 2; l <= n+1; l++)
{
for (int i = 0; i <= n-l+1; i++)
{
j = i+l;
int max = -1;
for (int k = i+1; k < j; k++)
{
int temp = _v[i][k] + _v[k][j] + v[k];
if (temp > max)
{
max = temp;
_e[i][j] = k;
}
}
}
}
}

16.2

16.2-1

证明:

​ 即证明命题:设\(a_k\)是剩余物品中\(v_i/w_i\) 最大的物品,则对于这个子问题,\(a_k\)必在最优解中。

​ 证明:否则假设存在\(a_j\)\((w_j \leq w_k)\)使得\(\sum\)\(v_i\)更大

​ 由于\(v_k/w_k \geq v_j/w_k\)

​ 所以\(v_k \geq v_j\)

​ 所以矛盾

16.2-2

typedef struct
{
int v;
int w;
}Product;
bool CompareByW(Product a, Product b)
{
return a.w < b.w;
}

int solution(vector<Product> products,  int weight)
{
sort(products.begin(), products.end(), CompareByW);

int e[weight+1];
int p[weight+1];

for (int i = 0; i <= weight; i++) e[i] = 0;

for (int i = 1; i <= weight; i++)
{
for (int j = 0; weight - products[j].w >= 0; j++)
{
int temp = products[j].v + e[weight - products[j].w];
if (temp > e[i])
{
e[i] = temp;
p[i] = j;
}
}
}

return e[weight];
}

16.2-3

typedef struct
{
int v;
int w;
}Product;
bool CompareByW(Product a, Product b)
{
return a.w < b.w;
}
int solution(vector<int> products, int weight)
{
sort(products.begin(), products.end(), CompareByW);

int max = 0;
int k = -1;
for (int i = 0; i < products.size(); i++)
{
if ((weight = weight - products[i].w) >= 0)
{
max += products[i].v;
int k = i;
}
else    break;
}
return max;
}
[/code]

证明:

​ 设此贪心策略下装入的商品按w递增排序为\(p_1, p_2, ..., p_m\)

​ 假设它不是最优解,则存在最优解下装入的商品按w递增排序为\(q_1, q_2, ..., q_{m'}\)

​ 由贪心的性质得:

​ $\sum_{1\leq i \leq m} p_i.w $ \(\leq\) \(\sum_{1\leq i \leq m'}q_i.w\)

​ $\sum_{1\leq i \leq m} p_i.v $ \(\geq\) \(\sum_{1\leq i \leq m'}q_i.v\)

​ 矛盾

16.2-4

int solution(int *places, int m)
{
int cnt = 0;
int dis = 0;
int n = places.length();
for (int i = 0; i < n; i++)
{
dis += places[i];
if (dis > m)
{
dis = 0;
cnt++;
i--;
}
}
return cnt;
}

证明:

​ 设此贪心策略下的补充水的地点依次为\(p_1, p_2, ..., p_m\)

假设它不是最优解,则存在最优解下的地点依次为$q_1, q_2, ..., q_{m'}$

​ 且\(m' < m\)

​ 由于任意两取水点之间距离\(dis \leq m\)

​ 所以\(\sum _{1\leq i \leq m'}\)\(dis(q_i)\) < \(\sum _{1\leq i \leq m}\)\(dis(p_i)\) = whole distance

​ 矛盾

16.2-5

int solution(float *x)
{
sort(x);
int n = x.length();
int pos
;
int cnt = 0;
for (int i = 0; i < n; i++)
{
pos[cnt++] = i;
float up = x[i]+1;
while (y[i] <= up)
{
i++;
}
}
return cnt;
}

证明:

​ 最优子结构:

​ 先对点集{x}得到{y}.\(S_{ij}\)表示以\(y_i\)为起点,\(y_j\)为最后一个点的单位长度区间集。设\(S_{mn}\)\(\subset\)\(S_{ij}\)

​ 用c[i,j]表示集合\(S_{ij}\)的最优解大小。

​ 则有递归式:

​ c[i,j] = \(min_{S_{mn}\subset S_{ij}}\){c[i,m]+c[n,j]+1}

​ 假设贪心策略下的结果[p1, p1+1], ..., [\(p_m, p_m+1\)]不是最优解,则存在最优解[q1, q1+1], ..., [\(q_{m'}\), \(q_{m'}+1\)]

​ 且m' < m

​ 又\(p_m+1 - p_1 \geq y_j - y_i\) 但 \(p_{m-1}+1-p_1 < y_j - y_i\)

​ 可知矛盾

16.2-6

typedef struct
{
int v;
int w;
float l;
}Product;
bool CompareByL(Product a, Product b)
{
return a.l > b.l;
}
float solution(vector<product> products, int weight)
{
sort(products.begin(), products.end(), CompareByL);
int n = products.size():
float max = 0;
for (int i = 0; i < n; i++)
{
if (weight - products[i].w >= 0)
{
max += products[i].v;
weight -= products[i].w;
}
else
{
max += products[i].l*weight;
break;
}
}
return max;
}

16.2-7

#include <cmath>
double solution(vector<int> a, vector<int> b)
{
sort(a.begin(), a.end());
sort(b.begin(), b.end());

double max = 0;
int n = a.size():
for (int i = 0; i < n; i++)
{
max += pow(a[i], b[i]);
}
return max;
}

证明:

​ \(lg\)\(\prod_1^n a_i^{b_i}\) = \(\sum_1^n b_ilga_i\)

​ 由排序不等式可得,此算法正确。

16.4

16.4-1

证明:
​ 1、S是一个有限集

​ 2、\(I_k\)满足遗传性。

​ 设任意集合B\(\subset\)A,|B| \(\leq\) k

​ 对于任意A\(\subset\)B, 有A \(\subset\)\(I_k\)

​ 3、满足交换性

​ 设\(A \in I_k 、B \in I_k, |A| < |B|\), 存在\(x \in B-A\) ,

​ |{x} \(\bigcup A|\)\(\leq\)|B|

​ 所以|x \(\bigcup\) A| \(\in\) \(I_k\)

16.4-2

证明:
​ 1、S是一个有限集

​ 2、\(I\)是可遗传的

​ 对于任意B\(\in I\)且A\(\subset\)B,有B中的列是线性无关的。

​ 所以A中的列也是线性无关的,所以A\(\in I\)

​ 3、\(M\)满足交换性。

​ 对于任意\(A \in I, B \in I, |A| < |B|\),则\(A \subset B\)

​ 所以必存在某个元素\(x \in B-A\), 使得\(A \bigcup {x} \in I\)

16.4-3

证明:
​ 1、S是一个有限集

​ 2、\(I'\)是可遗传的

​ 对于任意\(B' \in I'且A' \subset B'\), 存在最大独立子集\(A \in I\), 使得\(A \subset S-B'\)

​ 又\(S-B' \subset S-A'\)

​ 所以\(A \subset S-A'\)

​ 3、\((S,I')\)是可交换的

​ 对于任意\(A' \in I', B'\in I', |A'| < |B'|\)

​ 若\(A' \subset B'\),由性质2得显然成立。

​ 否则,假设存在最大独立子集\(C_1, C_2 \in I\),使得\(C_1 \subset S-A', C_2 \subset S-B'\)

转载于:https://www.cnblogs.com/KarlZhang/p/8490616.html

内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: