您的位置:首页 > 其它

tensorflow 双LSTM实现地址相似性判断

2017-04-05 00:00 411 查看
摘要: 地址相似性判断应用较广,基于双向LSTM可以较为有效的实现。
基本思路如下
1.输入由两个地址组成
2.每个地址进入经过双向LSTM之后,经过全连接层输出后,再计算余弦距离,距离越大,说明地址的相似性越高。

基本环境

tensorflow 1.0

代码结构

双向LSTM模型对应的代码文件siamese_similarity_model.py
main函数对应的代码main.py

代码siamese_similarity_model.py

# -*- coding: utf-8 -*-
# Siamese Address Similarity with TensorFlow (Model File)
#------------------------------------------
#
# Here, we show how to perform address matching
#   with a Siamese RNN model

import tensorflow as tf

def snn(address1, address2, dropout_keep_prob,
vocab_size, num_features, input_length):

# Define the siamese double RNN with a fully connected layer at the end
def siamese_nn(input_vector, num_hidden):
cell_unit = tf.contrib.rnn.BasicLSTMCell#tf.nn.rnn_cell.BasicLSTMCell

# Forward direction cell
lstm_forward_cell = cell_unit(num_hidden, forget_bias=1.0)
lstm_forward_cell = tf.contrib.rnn.DropoutWrapper(lstm_forward_cell, output_keep_prob=dropout_keep_prob)

# Backward direction cell
lstm_backward_cell = cell_unit(num_hidden, forget_bias=1.0)
lstm_backward_cell = tf.contrib.rnn.DropoutWrapper(lstm_backward_cell, output_keep_prob=dropout_keep_prob)

# Split title into a character sequence
input_embed_split = tf.split(axis=1, num_or_size_splits=input_length, value=input_vector)
input_embed_split = [tf.squeeze(x, axis=[1]) for x in input_embed_split]

# Create bidirectional layer
try:
outputs, _, _ = tf.contrib.rnn.static_bidirectional_rnn(lstm_forward_cell,
lstm_backward_cell,
input_embed_split,
dtype=tf.float32)
except Exception:
outputs = tf.contrib.rnn.static_bidirectional_rnn(lstm_forward_cell,
lstm_backward_cell,
input_embed_split,
dtype=tf.float32)
# Average The output over the sequence
temporal_mean = tf.add_n(outputs) / input_length

# Fully connected layer
output_size = 10
A = tf.get_variable(name="A", shape=[2*num_hidden, output_size],
dtype=tf.float32,
initializer=tf.random_normal_initializer(stddev=0.1))
b = tf.get_variable(name="b", shape=[output_size], dtype=tf.float32,
initializer=tf.random_normal_initializer(stddev=0.1))

final_output = tf.matmul(temporal_mean, A) + b
final_output = tf.nn.dropout(final_output, dropout_keep_prob)

return(final_output)

output1 = siamese_nn(address1, num_features)
# Declare that we will use the same variables on the second string
with tf.variable_scope(tf.get_variable_scope(), reuse=True):
output2 = siamese_nn(address2, num_features)

# Unit normalize the outputs
output1 = tf.nn.l2_normalize(output1, 1)
output2 = tf.nn.l2_normalize(output2, 1)
# Return cosine distance
#   in this case, the dot product of the norms is the same.
dot_prod = tf.reduce_sum(tf.multiply(output1, output2), 1)

return(dot_prod)

def get_predictions(scores):
predictions = tf.sign(scores, name="predictions")
return(predictions)

def loss(scores, y_target, margin):
# Calculate the positive losses
pos_loss_term = 0.25 * tf.square(tf.subtract(1., scores))

# If y-target is -1 to 1, then do the following
#pos_mult = tf.add(tf.multiply(0.5, y_target), 0.5)
# Else if y-target is 0 to 1, then do the following
pos_mult = tf.cast(y_target, tf.float32)

# Make sure positive losses are on similar strings
positive_loss = tf.multiply(pos_mult, pos_loss_term)

# Calculate negative losses, then make sure on dissimilar strings

# If y-target is -1 to 1, then do the following:
#neg_mult = tf.add(tf.mul(-0.5, y_target), 0.5)
# Else if y-target is 0 to 1, then do the following
neg_mult = tf.subtract(1., tf.cast(y_target, tf.float32))

negative_loss = neg_mult*tf.square(scores)

# Combine similar and dissimilar losses
loss = tf.add(positive_loss, negative_loss)

# Create the margin term.  This is when the targets are 0.,
#  and the scores are less than m, return 0.

# Check if target is zero (dissimilar strings)
target_zero = tf.equal(tf.cast(y_target, tf.float32), 0.)
# Check if cosine outputs is smaller than margin
less_than_margin = tf.less(scores, margin)
# Check if both are true
both_logical = tf.logical_and(target_zero, less_than_margin)
both_logical = tf.cast(both_logical, tf.float32)
# If both are true, then multiply by (1-1)=0.
multiplicative_factor = tf.cast(1. - both_logical, tf.float32)
total_loss = tf.multiply(loss, multiplicative_factor)

# Average loss over batch
avg_loss = tf.reduce_mean(total_loss)
return(avg_loss)

def accuracy(scores, y_target):
predictions = get_predictions(scores)
# Cast into integers (outputs can only be -1 or +1)
y_target_int = tf.cast(y_target, tf.int32)
# Change targets from (0,1) --> (-1, 1)
#    via (2 * x - 1)
#y_target_int = tf.sub(tf.mul(y_target_int, 2), 1)
predictions_int = tf.cast(tf.sign(predictions), tf.int32)
correct_predictions = tf.equal(predictions_int, y_target_int)
accuracy = tf.reduce_mean(tf.cast(correct_predictions, tf.float32))
return(accuracy)

代码main.py

# -*- coding: utf-8 -*-
# Siamese Address Similarity with TensorFlow (Driver File)
#------------------------------------------
#
# Here, we show how to perform address matching
#   with a Siamese RNN model

import random
import string
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.python.framework import ops
ops.reset_default_graph()

import siamese_similarity_model as model

# Start a graph session
sess = tf.Session()

# Model parameters
batch_size = 200
n_batches = 300
max_address_len = 20
margin = 0.25
num_features = 50
dropout_keep_prob = 0.8

# Function to randomly create one typo in a string w/ a probability
def create_typo(s):
rand_ind = random.choice(range(len(s)))
s_list = list(s)
s_list[rand_ind]=random.choice(string.ascii_lowercase + '0123456789')
s = ''.join(s_list)
return(s)

# Generate data
street_names = ['abbey', 'baker', 'canal', 'donner', 'elm', 'fifth',
'grandvia', 'hollywood', 'interstate', 'jay', 'kings']
street_types = ['rd', 'st', 'ln', 'pass', 'ave', 'hwy', 'cir', 'dr', 'jct']

# Define test addresses
test_queries = ['111 abbey ln', '271 doner cicle',
'314 king avenue', 'tensorflow is fun']
test_references = ['123 abbey ln', '217 donner cir', '314 kings ave',
'404 hollywood st', 'tensorflow is so fun']

# Get a batch of size n, half of which is similar addresses, half are not
def get_batch(n):
# Generate a list of reference addresses with similar addresses that have
# a typo.
numbers = [random.randint(1, 9999) for i in range(n)]
streets = [random.choice(street_names) for i in range(n)]
street_suffs = [random.choice(street_types) for i in range(n)]
full_streets = [str(w) + ' ' + x + ' ' + y for w,x,y in zip(numbers, streets, street_suffs)]
typo_streets = [create_typo(x) for x in full_streets]
reference = [list(x) for x in zip(full_streets, typo_streets)]

# Shuffle last half of them for training on dissimilar addresses
half_ix = int(n/2)
bottom_half = reference[half_ix:]
true_address = [x[0] for x in bottom_half]
typo_address = [x[1] for x in bottom_half]
typo_address = list(np.roll(typo_address, 1))
bottom_half = [[x,y] for x,y in zip(true_address, typo_address)]
reference[half_ix:] = bottom_half

# Get target similarities (1's for similar, -1's for non-similar)
target = [1]*(n-half_ix) + [-1]*half_ix
reference = [[x,y] for x,y in zip(reference, target)]
return(reference)

# Define vocabulary dictionary (remember to save '0' for padding)
vocab_chars = string.ascii_lowercase + '0123456789 '
vocab2ix_dict = {char:(ix+1) for ix, char in enumerate(vocab_chars)}
vocab_length = len(vocab_chars) + 1

# Define vocab one-hot encoding
def address2onehot(address,
vocab2ix_dict = vocab2ix_dict,
max_address_len = max_address_len):
# translate address string into indices
address_ix = [vocab2ix_dict[x] for x in list(address)]

# Pad or crop to max_address_len
address_ix = (address_ix + [0]*max_address_len)[0:max_address_len]
return(address_ix)

# Define placeholders
address1_ph = tf.placeholder(tf.int32, [None, max_address_len], name="address1_ph")
address2_ph = tf.placeholder(tf.int32, [None, max_address_len], name="address2_ph")

y_target_ph = tf.placeholder(tf.int32, [None], name="y_target_ph")
dropout_keep_prob_ph = tf.placeholder(tf.float32, name="dropout_keep_prob")

# Create embedding lookup
identity_mat = tf.diag(tf.ones(shape=[vocab_length]))
address1_embed = tf.nn.embedding_lookup(identity_mat, address1_ph)
address2_embed = tf.nn.embedding_lookup(identity_mat, address2_ph)

# Define Model
text_snn = model.snn(address1_embed, address2_embed, dropout_keep_prob_ph,
vocab_length, num_features, max_address_len)

# Define Accuracy
batch_accuracy = model.accuracy(text_snn, y_target_ph)
# Define Loss
batch_loss = model.loss(text_snn, y_target_ph, margin)
# Define Predictions
predictions = model.get_predictions(text_snn)

# Declare optimizer
optimizer = tf.train.AdamOptimizer(0.01)
# Apply gradients
train_op = optimizer.minimize(batch_loss)

# Initialize Variables
init = tf.global_variables_initializer()
sess.run(init)

# Train loop
train_loss_vec = []
train_acc_vec = []
for b in range(n_batches):
# Get a batch of data
batch_data = get_batch(batch_size)
# Shuffle data
np.random.shuffle(batch_data)
# Parse addresses and targets
input_addresses = [x[0] for x in batch_data]
target_similarity = np.array([x[1] for x in batch_data])
address1 = np.array([address2onehot(x[0]) for x in input_addresses])
address2 = np.array([address2onehot(x[1]) for x in input_addresses])

train_feed_dict = {address1_ph: address1,
address2_ph: address2,
y_target_ph: target_similarity,
dropout_keep_prob_ph: dropout_keep_prob}

_, train_loss, train_acc = sess.run([train_op, batch_loss, batch_accuracy],
feed_dict=train_feed_dict)
# Save train loss and accuracy
train_loss_vec.append(train_loss)
train_acc_vec.append(train_acc)
# Print out statistics
if b%10==0:
print('Training Metrics, Batch {0}: Loss={1:.3f}, Accuracy={2:.3f}.'.format(b, train_loss, train_acc))

# Calculate the nearest addresses for test inputs
# First process the test_queries and test_references
test_queries_ix = np.array([address2onehot(x) for x in test_queries])
test_references_ix = np.array([address2onehot(x) for x in test_references])
num_refs = test_references_ix.shape[0]
best_fit_refs = []
for query in test_queries_ix:
test_query = np.repeat(np.array([query]), num_refs, axis=0)
test_feed_dict = {address1_ph: test_query,
address2_ph: test_references_ix,
y_target_ph: target_similarity,
dropout_keep_prob_ph: 1.0}
test_out = sess.run(text_snn, feed_dict=test_feed_dict)
best_fit = test_references[np.argmax(test_out)]
best_fit_refs.append(best_fit)

print('Query Addresses: {}'.format(test_queries))
print('Model Found Matches: {}'.format(best_fit_refs))

# Plot the loss and accuracy
plt.plot(train_loss_vec, 'k-', lw=2, label='Batch Loss')
plt.plot(train_acc_vec, 'r:', label='Batch Accuracy')
plt.xlabel('Iterations')
plt.ylabel('Accuracy and Loss')
plt.title('Accuracy and Loss of Siamese RNN')
plt.grid()
plt.legend(loc='lower right')
plt.show()

输出结果

Training Metrics, Batch 0: Loss=0.671, Accuracy=0.500.

Training Metrics, Batch 10: Loss=0.104, Accuracy=0.690.

Training Metrics, Batch 20: Loss=0.117, Accuracy=0.755.

Training Metrics, Batch 30: Loss=0.089, Accuracy=0.705.

Training Metrics, Batch 40: Loss=0.032, Accuracy=0.715.

Training Metrics, Batch 50: Loss=0.033, Accuracy=0.690.

Training Metrics, Batch 60: Loss=0.026, Accuracy=0.730.

Training Metrics, Batch 70: Loss=-0.035, Accuracy=0.795.

Training Metrics, Batch 80: Loss=0.013, Accuracy=0.735.

Training Metrics, Batch 90: Loss=0.034, Accuracy=0.745.

Training Metrics, Batch 100: Loss=0.038, Accuracy=0.690.

Training Metrics, Batch 110: Loss=-0.002, Accuracy=0.790.

Training Metrics, Batch 120: Loss=-0.003, Accuracy=0.765.

Training Metrics, Batch 130: Loss=-0.001, Accuracy=0.780.

Training Metrics, Batch 140: Loss=0.013, Accuracy=0.785.

Training Metrics, Batch 150: Loss=0.002, Accuracy=0.735.

Training Metrics, Batch 160: Loss=-0.002, Accuracy=0.805.

Training Metrics, Batch 170: Loss=-0.002, Accuracy=0.740.

Training Metrics, Batch 180: Loss=0.004, Accuracy=0.765.

Training Metrics, Batch 190: Loss=-0.004, Accuracy=0.725.

Training Metrics, Batch 200: Loss=-0.001, Accuracy=0.765.

Training Metrics, Batch 210: Loss=0.012, Accuracy=0.745.

Training Metrics, Batch 220: Loss=-0.015, Accuracy=0.800.

Training Metrics, Batch 230: Loss=0.006, Accuracy=0.740.

Training Metrics, Batch 240: Loss=-0.021, Accuracy=0.745.

Training Metrics, Batch 250: Loss=-0.018, Accuracy=0.745.

Training Metrics, Batch 260: Loss=0.007, Accuracy=0.800.

Training Metrics, Batch 270: Loss=-0.012, Accuracy=0.765.

Training Metrics, Batch 280: Loss=-0.020, Accuracy=0.790.

Training Metrics, Batch 290: Loss=0.009, Accuracy=0.750.

Query Addresses: ['111 abbey ln', '271 doner cicle', '314 king avenue', 'tensorflow is fun']

Model Found Matches: ['123 abbey ln', '217 donner cir', '314 kings ave', 'tensorflow is so fun']



参考书籍

TensorFlow Machine Learning Cookbook,Author: Nick McClurePub 书籍链接
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签:  TensorFlow LSTM