您的位置:首页 > 编程语言 > Python开发

文档主题生成模型(LDA)算法原理及Spark MLlib调用实例(Scala/Java/python)

2016-12-06 11:48 911 查看
文档主题生成模型(LDA)

算法介绍:

LDA(Latent Dirichlet Allocation)是一种文档主题生成模型,也称为一个三层贝叶斯概率模型,包含词、主题和文档三层结构。所谓生成模型,就是说,我们认为一篇文章的每个词都是通过“以一定概率选择了某个主题,并从这个主题中以一定概率选择某个词语”这样一个过程得到。文档到主题服从多项式分布,主题到词服从多项式分布。

LDA是一种非监督机器学习技术,可以用来识别大规模文档集(document collection)或语料库(corpus)中潜藏的主题信息。它采用了词袋(bag of words)的方法,这种方法将每一篇文档视为一个词频向量,从而将文本信息转化为了易于建模的数字信息。但是词袋方法没有考虑词与词之间的顺序,这简化了问题的复杂性,同时也为模型的改进提供了契机。每一篇文档代表了一些主题所构成的一个概率分布,而每一个主题又代表了很多单词所构成的一个概率分布。

参数:

checkpointInterval:

类型:整数型。

含义:设置检查点间隔(>=1),或不设置检查点(-1)。

docConcentration:

类型:双精度数组型。

含义:文档关于主题("theta")的先验分布集中参数(通常名为“alpha")。

featuresCol:

类型:字符串型。

含义:特征列名。

k:

类型:整数型。

含义:需推断的主题(簇)的数目。

maxIter:

类型:整数型。

含义:迭代次数(>=0)。

optimizer:

类型:字符串型。

含义:估计LDA模型时使用的优化器。

含义:类别条件概率预测结果列名。

seed:

类型:长整型。

含义:随机种子。

subsamplingRate:

类型:双精度型。

含义:仅对在线优化器(即optimizer=”online”)。

topicConcentration:

类型:双精度型。

含义:主题关于文字的先验分布集中参数(通常名为“beta"或"eta")。

topicDistributionCol:

类型:字符串型。

含义:每个文档的混合主题分布估计的输出列(文献中通常名为"theta")。

调用示例:

Scala:

import org.apache.spark.ml.clustering.LDA

// Loads data.
val dataset = spark.read.format("libsvm")
.load("data/mllib/sample_lda_libsvm_data.txt")

// Trains a LDA model.
val lda = new LDA().setK(10).setMaxIter(10)
val model = lda.fit(dataset)

val ll = model.logLikelihood(dataset)
val lp = model.logPerplexity(dataset)
println(s"The lower bound on the log likelihood of the entire corpus: $ll")
println(s"The upper bound bound on perplexity: $lp")

// Describe topics.
val topics = model.describeTopics(3)
println("The topics described by their top-weighted terms:")
topics.show(false)

// Shows the result.
val transformed = model.transform(dataset)
transformed.show(false)
Java:
import org.apache.spark.ml.clustering.LDA;
import org.apache.spark.ml.clustering.LDAModel;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;

// Loads data.
Dataset<Row> dataset = spark.read().format("libsvm")
.load("data/mllib/sample_lda_libsvm_data.txt");

// Trains a LDA model.
LDA lda = new LDA().setK(10).setMaxIter(10);
LDAModel model = lda.fit(dataset);

double ll = model.logLikelihood(dataset);
double lp = model.logPerplexity(dataset);
System.out.println("The lower bound on the log likelihood of the entire corpus: " + ll);
System.out.println("The upper bound bound on perplexity: " + lp);

// Describe topics.
Dataset<Row> topics = model.describeTopics(3);
System.out.println("The topics described by their top-weighted terms:");
topics.show(false);

// Shows the result.
Dataset<Row> transformed = model.transform(dataset);
transformed.show(false);Python:
from pyspark.ml.clustering import LDA

# Loads data.
dataset = spark.read.format("libsvm").load("data/mllib/sample_lda_libsvm_data.txt")

# Trains a LDA model.
lda = LDA(k=10, maxIter=10)
model = lda.fit(dataset)

ll = model.logLikelihood(dataset)
lp = model.logPerplexity(dataset)
print("The lower bound on the log likelihood of the entire corpus: " + str(ll))
print("The upper bound bound on perplexity: " + str(lp))

# Describe topics.
topics = model.describeTopics(3)
print("The topics described by their top-weighted terms:")
topics.show(truncate=False)

# Shows the result
transformed = model.transform(dataset)
transformed.show(truncate=False) 
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
相关文章推荐