您的位置:首页 > 其它

【数字图像处理学习笔记之一】数字图像噪声

2016-06-26 22:13 525 查看

噪声表现形式

噪声在图像上常表现为一引起较强视觉效果的孤立像素点或像素块。一般,噪声信号与要研究的对象不相关,它以无用的信息形式出现,扰乱图像的可观测信息。通俗的说就是噪声让图像不清楚。

噪声来源

两个方面
(1)图像获取过程中
两种常用类型的图像传感器CCD和CMOS采集图像过程中,由于受传感器材料属性、工作环境、电子元器件和电路结构等影响,会引入各种噪声,如电阻引起的热噪声、场效应管的沟道热噪声、光子噪声、暗电流噪声、光响应非均匀性噪声。

(2)图像信号传输过程中
由于传输介质和记录设备等的不完善,数字图像在其传输记录过程中往往会受到多种噪声的污染。另外,在图像处理的某些环节当输入的对象并不如预想时也会在结果图像中引入噪声。

噪声对数字图像的影响

对于数字图像信号,噪声表为或大或小的极值,这些极值通过加减作用于图像像素的真实灰度值上,对图像造成亮、暗点干扰,极大降低了图像质量,影响图像复原、分割、特征提取、图像识别等后继工作的进行。

噪声的描述和分类

噪声可以看作随机信号,具有统计学上的特征属性。功率谱密度功率频谱分布PDF)即是噪声的特征之一,通过功率谱密度分类噪声。

(1)高斯噪声
高斯噪声是指它的概率密度函数服从高斯分布(即正态分布)的一类噪声。如果一个噪声,它的幅度分布服从高斯分布,而它的功率谱密度又是均匀分布的,则称它为高斯白噪声。高斯白噪声的二阶矩不相关,一阶矩为常数,是指先后信号在时间上的相关性。

概率密度函数PDF:



其中z表示灰度值,μ表示z的平均值或期望值,σ表示z的标准差。标准差的平方σ2称为z的方差。

产生原因:1)图像传感器在拍摄时市场不够明亮、亮度不够均匀;2)电路各元器件自身噪声和相互影响;

3)图像传感器长期工作,温度过高。



(2)瑞利噪声
瑞利噪声的概率密度函数由下式给出:



均值:



方差:



注意 距原点的位移和其密度图形的基本形状向右变形的事实,瑞利密度对于近似偏移的直方图十分适用。



(3)伽马(爱尔兰)噪声
伽马噪声的PDF由下式给出:



其中,a>0,b为正整数且“!”表示阶乘。其密度的均值和方差由下式给出:




下图显示了伽马密度的曲线,尽管上式经常被用来表示伽马密度,严格地说,只有当分母为伽马函数Г(b)时才是正确的。当分母如表达式所示时,该密度近似称为爱尔兰密度。



 
(4)指数分布噪声
指数噪声的PDF可由下式给出:



其中a>0。概率密度函数的期望值和方差是:




注意,指数分布的概率密度函数是当b=l时爱尔兰概率分布的特殊情况。



(5)均匀噪声分布
均匀噪声分布的概率密度,由下式给出:

    


概率密度函数的期望值和方差可由下式给出:




           



(6)脉冲噪声(椒盐噪声)
(双极)脉冲噪声的PDF可由下式给出:
        


如果b>a,灰度值b在图像中将显示为一个亮点,相反,a的值将显示为一个暗点。若Pa或Pb为零,则脉冲噪声称为单极脉冲。如果Pa和Pb均不可能为零,尤其是它们近似相等时,脉冲噪声值将类似于随机分布在图像上的胡椒和盐粉微粒。由于这个原因,双极脉冲噪声也称为椒盐噪声。同时,它们有时也称为散粒和尖峰噪声。在我们的讨论中,将交替使用脉冲噪声和椒盐噪声这两个术语。
 噪声脉冲可以是正的,也可以是负的。标定通常是图像数字化过程的一部分。因为脉冲干扰通常与图像信号的强度相比较大,因此,在一幅图像中,脉冲噪声总是数字化为最大值(纯黑或纯白)。这样,通常假设a,b是饱和值,从某种意义上看,在数字化图像中,它们等于所允许的最大值和最小值。由于这一结果,负脉冲以一个黑点(胡椒点)出现在图像中。由于相同的原因,正脉冲以白点(盐点)出现在图像中。对于一个8位图像,这意味着a=0(黑)。b=255(白)。显示了脉冲噪声的概率密度函数。


        前述的一组PDF为在实践中模型化宽带噪声干扰状态提供了有用的工具。例如,在一幅图像中,高斯噪声的产生源于电子电路噪声和由低照明度或高温带来的传感器噪声。瑞利密度分布在图像范围内特征化噪声现象时非常有用。指数密度分布和伽马密度分布在激光成像中有一些应用。像前几章所提及的那样,脉冲噪声主要表现在成像中的短暂停留中,例如,错误的开关操作。均匀密度分布可能是在实践中描述得最少的,然而,均匀密度作为模拟随机数产生器的基础是非常有用的。

不同的噪声在图像的表现形式

下图为原始测试图像



加入不同噪声后图像(椒盐噪声是惟一一种引起退化的视觉可见的噪声类型。):



内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息