您的位置:首页 > 其它

压测工具webbench源码分析

2015-07-03 21:06 316 查看
转载自/article/5260618.html

说明:内容绝大来自博主HorstXu,但是也添加了自己的一点理解。

一 我与webbench二三事

Webbench是一个在linux下使用的非常简单的网站压测工具。它使用fork()模拟多个客户端同时访问我们设定的URL,测试网站在压力下工作的性能。Webbench使用C语言编写,下面是其下载链接

http://home.tiscali.cz/~cz210552/webbench.html

把webbench-1.5.tar.gz这个文件下载下来之后解压缩,进入webbench-1.5文件夹,然后执行make,就可以看到文件夹下多了一个可执行程序webbench。尝试运行一下,就可以得到如图所示的结果。



可以看到,我们模拟了10个client同时访问URL所示的某个图片,测试执行了5秒。最终得到的结果是,我们发送http
GET请求的速度为188892pages/min,服务器响应速度为5518794bytes/sec,请求中有15741个成功,0个失败。

二、与webbench的初步相识

我们首先来看一下webbench的工作流程,如下图:



webbench主要的工作原理就是以下几点:
1. 主函数进行必要的准备工作,进入bench开始压测
2. bench函数使用fork模拟出多个客户端,调用socket并发请求,每个子进程记录自己的访问数据,并写入管道
3. 父进程从管道读取子进程的输出信息
4. 使用alarm函数进行时间控制,到时间后会产生SIGALRM信号,调用信号处理函数使子进程停止
5. 最后只留下父进程将所有子进程的输出数据汇总计算,输出到屏幕上

三、走进webbench的内心世界

接下来我们详细截图webbench的源代码。查看webbench的源代码,发现代码文件只有两个,Socket.c和webbench.c。首先看一下Socket.c,它当中只有一个函数int
Socket(const char *host, int clientPort),大致内容如下:
<span style="font-size:14px;">int Socket(const char *host, int clientPort)
{
int sock;
unsigned long inaddr;
struct sockaddr_in ad;
struct hostent *hp;

memset(&ad, 0, sizeof(ad));
ad.sin_family = AF_INET;

inaddr = inet_addr(host);
if (inaddr != INADDR_NONE)
memcpy(&ad.sin_addr, &inaddr, sizeof(inaddr));
else
{
hp = gethostbyname(host);
if (hp == NULL)
return -1;
memcpy(&ad.sin_addr, hp->h_addr, hp->h_length);
}
ad.sin_port = htons(clientPort);

sock = socket(AF_INET, SOCK_STREAM, 0);
if (sock < 0)
return sock;
if (connect(sock, (struct sockaddr *)&ad, sizeof(ad)) < 0)
return -1;
return sock;
}</span>


代码说明:这属于“客户端程序”,通过connect函数将套接字与服务器建立连接,成功后则可以通过套接字,从服务器读取数据。具体可以参考博文/article/1326717.html

接着我们来瞧一下webbench.c文件。这个文件中包含了以下几个函数,我们一一列举出来:

static void alarm_handler(int signal); //为方便下文引用,我们称之为函数1。
static void usage(void); //函数2
void build_request(const char *url); //函数3
static int bench(void); //函数4
void benchcore(const char *host, const int port, const char *req); //函数5
int main(int argc, char *argv[]); //函数6


下面我们分别做讲解。

(1)全局变量列表

源文件中出现在所有函数前面的全局变量,主要有以下几项,我们以注释的方式解释其在程序中的用途

volatile int timerexpired=0;//判断压测时长是否已经到达设定的时间
int speed=0; //记录进程成功得到服务器响应的数量
int failed=0;//记录失败的数量(speed表示成功数,failed表示失败数)
int bytes=0;//记录进程成功读取的字节数
int http10=1;//http版本,0表示http0.9,1表示http1.0,2表示http1.1
int method=METHOD_GET; //默认请求方式为GET,也支持HEAD、OPTIONS、TRACE
int clients=1;//并发数目,默认只有1个进程发请求,通过-c参数设置
int force=0;//是否需要等待读取从server返回的数据,0表示要等待读取
int force_reload=0;//是否使用缓存,1表示不缓存,0表示可以缓存页面
int proxyport=80; //代理服务器的端口
char *proxyhost=NULL; //代理服务器的ip
int benchtime=30; //压测时间,默认30秒,通过-t参数设置
int mypipe[2]; //使用管道进行父进程和子进程的通信
char host[MAXHOSTNAMELEN]; //服务器端ip
char request[REQUEST_SIZE]; //所要发送的http请求


(2)函数1:
static void alarm_handler(int signal)

首先,来看一下最简单的函数,即函数1,它的内容如下:

static void alarm_handler(int signal)
{
timerexpired=1;
}


webbench在运行时可以设定压测的持续时间,以秒为单位。例如我们希望测试30秒,也就意味着压测30秒后程序应该退出了。webbench中使用信号(signal)来控制程序结束。函数1是在到达结束时间时运行的信号处理函数。它仅仅是将一个记录是否超时的变量timerexpired标记为true。后面会看到,在程序的while循环中会不断检测此值,只有timerexpired=1,程序才会跳出while循环并返回。

(3)函数2
:static void usage(void)

其内容如下:

static void usage(void)
{
fprintf(stderr,
"webbench [option]... URL\n"
"  -f|--force               Don't wait for reply from server.\n"
"  -r|--reload              Send reload request - Pragma: no-cache.\n"
"  -t|--time <sec>          Run benchmark for <sec> seconds. Default 30.\n"
"  -p|--proxy <server:port> Use proxy server for request.\n"
"  -c|--clients <n>         Run <n> HTTP clients at once. Default one.\n"
"  -9|--http09              Use HTTP/0.9 style requests.\n"
"  -1|--http10              Use HTTP/1.0 protocol.\n"
"  -2|--http11              Use HTTP/1.1 protocol.\n"
"  --get                    Use GET request method.\n"
"  --head                   Use HEAD request method.\n"
"  --options                Use OPTIONS request method.\n"
"  --trace                  Use TRACE request method.\n"
"  -?|-h|--help             This information.\n"
"  -V|--version             Display program version.\n"
);
};


从名字来看就很明显,这是教你如何使用webbench的函数,在linux命令行调用webbench方法不对的时候运行,作为提示。有一些比较常用的,比如-c来指定并发进程的多少;-t指定压测的时间,以秒为单位;支持HTTP0.9,HTTP1.0,HTTP1.1三个版本;支持GET,HEAD,OPTIONS,TRACE四种请求方式。不要忘了调用时,命令行最后还应该附上要测的服务端URL。

(4)函数3:void build_request(const
char *url)

这个函数主要操作全局变量char request[REQUEST_SIZE],根据url填充其内容。一个典型的http
GET请求如下:

GET /test.jpg HTTP/1.1
User-Agent: WebBench 1.5
Host:192.168.10.1
Pragma: no-cache
Connection: close

build_request函数的目的就是要把类似于以上这一大坨信息全部存到全局变量request[REQUEST_SIZE]中,其中换行操作使用的是”\r\n”。而以上这一大坨信息的具体内容是要根据命令行输入的参数,以及url来确定的。该函数使用了大量的字符串操作函数,例如strcpy,strstr,strncasecmp,strlen,strchr,index,strncpy,strcat。对这些基础函数不太熟悉的同学可以借这个函数复习一下。build_request的具体内容在此不做过多阐述。

(5)函数6:int main(int
argc, char *argv[])

之所以把函数6放在了函数4和函数5之前,是因为函数4和5是整个工具的最核心代码,我们把他放在最后分析。先来看一下整个程序的起始点:主函数(即函数6)。

int main(int argc, char *argv[])
{
/*函数最开始,使用getopt_long函数读取命令行参数,
来设置(1)中所提及的全局变量的值。
关于getopt_long的具体使用方法,这里有一个配有讲解的小例子,可以帮助学习: http://blog.csdn.net/chaoyue1216/article/details/7329788 在此期间如果出现错误,会调用函数2告知用户此工具使用方法,然后退出。
*/

build_request(argv[optind]); //参数读完后,argv[optind]即放在命令行最后的url
//调用函数3建立完整的HTTP request,
//HTTP request存储在全部变量char request[REQUEST_SIZE]

/*接下来的部分,main函数的所有代码都是在网屏幕上打印此次测试的信息,
例如即将测试多少秒,几个并发进程,使用哪个HTTP版本等。
这些信息并非程序核心代码,因此我们也略去。
*/

return bench(); //简简单单一句话,原来,压力测试在这最后一句才真正开始!
//所有的压测都在bench函数(即函数4)实现
}


(6)函数4:static int
bench(void)

源码如下:

static int bench(void){
int i,j,k;
pid_t pid=0;
FILE *f;

i=Socket(proxyhost==NULL?host:proxyhost,proxyport); //调用了Socket.c文件中的函数
if(i<0){ /*错误处理*/ }
close(i);

if(pipe(mypipe)){ /*错误处理*/ } //管道用于子进程向父进程回报数据
for(i=0;i<clients;i++){//根据clients大小fork出来足够的子进程进行测试
pid=fork();
if(pid <= (pid_t) 0){
sleep(1); /* make childs faster */
break;
}
}
if( pid< (pid_t) 0){ /*错误处理*/ }

if(pid== (pid_t) 0){//如果是子进程,调用benchcore进行测试
if(proxyhost==NULL)
benchcore(host,proxyport,request);
else
benchcore(proxyhost,proxyport,request);

f=fdopen(mypipe[1],"w");//子进程将测试结果输出到管道
if(f==NULL){ /*错误处理*/ }
fprintf(f,"%d %d %d\n",speed,failed,bytes);
fclose(f);
return 0;
} else{//如果是父进程,则从管道读取子进程输出,并作汇总
f=fdopen(mypipe[0],"r");
if(f==NULL) { /*错误处理*/ }
setvbuf(f,NULL,_IONBF,0);//无缓冲
speed=0;  failed=0;  bytes=0;

while(1){ //从管道读取数据,fscanf为阻塞式函数
pid=fscanf(f,"%d %d %d",&i,&j,&k);
if(pid<2){ /*错误处理*/ }
speed+=i;  failed+=j;  bytes+=k;
if(--clients==0) break;//这句用于记录已经读了多少个子进程的数据,读完就退出
}
fclose(f);
//最后将结果打印到屏幕上
printf("\nSpeed=%d pages/min, %d bytes/sec.\nRequests: %d susceed, %d failed.\n",
(int)((speed+failed)/(benchtime/60.0f)), (int)(bytes/(float)benchtime), speed, failed);
}
return i;
}


这段代码,一上来先进行了一次socket连接,确认能连通以后,才进行后续步骤。调用pipe函数初始化一个管道,用于子进行向父进程汇报测试数据。子进程根据clients数量fork出来。每个子进程都调用函数5进行测试,并将结果输出到管道,供父进程读取。父进程负责收集所有子进程的测试数据,并汇总输出。

代码说明:考虑代码“sleep(1)”的作用?答:防止数据竞争现象的出现。因为假设没有休眠1sec,那么通过fork()产生的子进程就会同时进入benchcore函数进行压力测试,即同时向管道写入数据,这时就发生了数据竞争。所以,当每个子进程休眠1sec后,相当于将子进程进行了“排序”,子进程间存在时间差,故防止了数据竞争。

(7)函数5:void benchcore(const
char *host,const int port,const char *req)

void benchcore(const char *host,const int port,const char *req){
int rlen;
char buf[1500];//记录服务器响应请求所返回的数据
int s,i;
struct sigaction sa;

sa.sa_handler=alarm_handler; //设置函数1为信号处理函数
sa.sa_flags=0;
if(sigaction(SIGALRM,&sa,NULL)) //超时会产生信号SIGALRM,用sa中的指定函数处理
exit(3);

alarm(benchtime);//开始计时
rlen=strlen(req);
nexttry:while(1){
if(timerexpired){//一旦超时则返回
if(failed>0){failed--;}
return;
}
s=Socket(host,port);//调用Socket函数建立TCP连接
if(s<0) { failed++;continue;}
if(rlen!=write(s,req,rlen)) {failed++;close(s);continue;} //发出请求
if(http10==0) //针对http0.9做的特殊处理
if(shutdown(s,1)) { failed++;close(s);continue;}

if(force==0){//全局变量force表示是否要等待服务器返回的数据
while(1){
if(timerexpired) break;
i=read(s,buf,1500);//从socket读取返回数据
if(i<0) {
failed++;
close(s);
goto nexttry;
}else{
if(i==0) break;
else
bytes+=i;
}
}
}
if(close(s)) {failed++;continue;}
speed++;
}
}


benchcore是子进程进行压力测试的函数,被每个子进程调用。这里使用了SIGALRM信号来控制时间,alarm函数设置了多少时间之后产生SIGALRM信号,一旦产生此信号,将运行函数1,使得timerexpired=1,这样可以通过判断timerexpired值来退出程序。另外,全局变量force表示我们是否在发出请求后需要等待服务器的响应结果。

四、总结

这是我看的第一个开源项目,它让我对客户端的建立读取、使用管道进行父子进程间的通信等加深了理解,也希望本文对理解webbench的同学有一定的帮助。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: