您的位置:首页 > 编程语言 > C语言/C++

在Win32下用C++实现多线程读写锁

2014-01-18 15:31 316 查看
读写锁实际是一种特殊的自旋锁,它把对共享资源的访问者划分成读者和写者,读者只对共享资源进行读访问,写者则需要对共享资源进行写操作。这种锁相对于自旋锁而言,能提高并发性,因为在多处理器系统中,它允许同时有多个读者来访问共享资源,最大可能的读者数为实际的逻辑CPU数。写者是排他性的,一个读写锁同时只能有一个写者或多个读者(与CPU数相关),但不能同时既有读者又有写者。

在读写锁保持期间也是抢占失效的。

如果读写锁当前没有读者,也没有写者,那么写者可以立刻获得读写锁,否则它必须自旋在那里,直到没有任何写者或读者。如果读写锁没有写者,那么读者可以立即获得该读写锁,否则读者必须自旋在那里,直到写者释放该读写锁。

1. 特性:

一次只有一个线程可以占有写模式的读写锁, 但是可以有多个线程同时占有读模式的读写锁. 正是因为这个特性,

当读写锁是写加锁状态时, 在这个锁被解锁之前, 所有试图对这个锁加锁的线程都会被阻塞.

当读写锁在读加锁状态时, 所有试图以读模式对它进行加锁的线程都可以得到访问权, 但是如果线程希望以写模式对此锁进行加锁, 它必须直到所有的线程释放锁.

通常, 当读写锁处于读模式锁住状态时, 如果有另外线程试图以写模式加锁, 读写锁通常会阻塞随后的读模式锁请求, 这样可以避免读模式锁长期占用, 而等待的写模式锁请求长期阻塞.

2. 适用性:

读写锁适合于对数据结构的读次数比写次数多得多的情况. 因为, 读模式锁定时可以共享, 以写模式锁住时意味着独占, 所以读写锁又叫共享-独占锁。

现在Win32的API,用C++实现自己的读写锁。这组API包括:CreateMutex,CreateEvent,WaitForSingleObject,WaitForMultipleObjects,ResetEvent,ReleaseMutex,SetEvent,CloseHandle。以下代码在VS2005下,已经编译通过。

RWLockImpl.h

[cpp]
view plaincopy

#ifndef _RWLockImpl_Header
#define _RWLockImpl_Header

#include <assert.h>
#include <iostream>
#include <Windows.h>
#include <process.h>

using namespace std;

/*
读写锁允许当前的多个读用户访问保护资源,但只允许一个写读者访问保护资源
*/

//-----------------------------------------------------------------
class CRWLockImpl
{
protected:
CRWLockImpl();
~CRWLockImpl();
void ReadLockImpl();
bool TryReadLockImpl();
void WriteLockImpl();
bool TryWriteLockImpl();
void UnlockImpl();

private:
void AddWriter();
void RemoveWriter();
DWORD TryReadLockOnce();

HANDLE m_mutex;
HANDLE m_readEvent;
HANDLE m_writeEvent;
unsigned m_readers;
unsigned m_writersWaiting;
unsigned m_writers;
};

//-----------------------------------------------------------------

class CMyRWLock: private CRWLockImpl
{
public:

//创建读/写锁
CMyRWLock(){};

//销毁读/写锁
~CMyRWLock(){};

//获取读锁
//如果其它一个线程占有写锁,则当前线程必须等待写锁被释放,才能对保护资源进行访问
void ReadLock();

//尝试获取一个读锁
//如果获取成功,则立即返回true,否则当另一个线程占有写锁,则返回false
bool TryReadLock();

//获取写锁
//如果一个或更多线程占有读锁,则必须等待所有锁被释放
//如果相同的一个线程已经占有一个读锁或写锁,则返回结果不确定
void WriteLock();

//尝试获取一个写锁
//如果获取成功,则立即返回true,否则当一个或更多其它线程占有读锁,返回false
//如果相同的一个线程已经占有一个读锁或写锁,则返回结果不确定
bool TryWriteLock();

//释放一个读锁或写锁
void Unlock();

private:
CMyRWLock(const CMyRWLock&);
CMyRWLock& operator = (const CMyRWLock&);
};

inline void CMyRWLock::ReadLock()
{
ReadLockImpl();
}

inline bool CMyRWLock::TryReadLock()
{
return TryReadLockImpl();
}

inline void CMyRWLock::WriteLock()
{
WriteLockImpl();
}

inline bool CMyRWLock::TryWriteLock()
{
return TryWriteLockImpl();
}

inline void CMyRWLock::Unlock()
{
UnlockImpl();
}

#endif

RWLockImpl.cpp

[cpp]
view plaincopy

#include "RWLockImpl.h"

CRWLockImpl::CRWLockImpl(): m_readers(0), m_writersWaiting(0), m_writers(0)
{
m_mutex = CreateMutex(NULL, FALSE, NULL);
if (m_mutex == NULL)
cout<<"cannot create reader/writer lock"<<endl;

m_readEvent = CreateEvent(NULL, TRUE, TRUE, NULL);
if (m_readEvent == NULL)
cout<<"cannot create reader/writer lock"<<endl;

m_writeEvent = CreateEvent(NULL, TRUE, TRUE, NULL);
if (m_writeEvent == NULL)
cout<<"cannot create reader/writer lock"<<endl;
}

CRWLockImpl::~CRWLockImpl()
{
CloseHandle(m_mutex);
CloseHandle(m_readEvent);
CloseHandle(m_writeEvent);
}

inline void CRWLockImpl::AddWriter()
{
switch (WaitForSingleObject(m_mutex, INFINITE))
{
case WAIT_OBJECT_0:
if (++m_writersWaiting == 1)
ResetEvent(m_readEvent);
ReleaseMutex(m_mutex);
break;
default:
cout<<"cannot lock reader/writer lock"<<endl;
}
}

inline void CRWLockImpl::RemoveWriter()
{
switch (WaitForSingleObject(m_mutex, INFINITE))
{
case WAIT_OBJECT_0:
if (--m_writersWaiting == 0 && m_writers == 0)
SetEvent(m_readEvent);
ReleaseMutex(m_mutex);
break;
default:
cout<<"cannot lock reader/writer lock"<<endl;
}
}

void CRWLockImpl::ReadLockImpl()
{
HANDLE h[2];
h[0] = m_mutex;
h[1] = m_readEvent;
switch (WaitForMultipleObjects(2, h, TRUE, INFINITE))
{
case WAIT_OBJECT_0:
case WAIT_OBJECT_0 + 1:
++m_readers;
ResetEvent(m_writeEvent);
ReleaseMutex(m_mutex);
assert(m_writers == 0);
break;
default:
cout<<"cannot lock reader/writer lock"<<endl;
}
}

bool CRWLockImpl::TryReadLockImpl()
{
for (;;)
{
if (m_writers != 0 || m_writersWaiting != 0)
return false;

DWORD result = TryReadLockOnce();
switch (result)
{
case WAIT_OBJECT_0:
case WAIT_OBJECT_0 + 1:
return true;
case WAIT_TIMEOUT:
continue;
default:
cout<<"cannot lock reader/writer lock"<<endl;
}
}
}

void CRWLockImpl::WriteLockImpl()
{
AddWriter();
HANDLE h[2];
h[0] = m_mutex;
h[1] = m_writeEvent;
switch (WaitForMultipleObjects(2, h, TRUE, INFINITE))
{
case WAIT_OBJECT_0:
case WAIT_OBJECT_0 + 1:
--m_writersWaiting;
++m_readers;
++m_writers;
ResetEvent(m_readEvent);
ResetEvent(m_writeEvent);
ReleaseMutex(m_mutex);
assert(m_writers == 1);
break;
default:
RemoveWriter();
cout<<"cannot lock reader/writer lock"<<endl;
}
}

bool CRWLockImpl::TryWriteLockImpl()
{
AddWriter();
HANDLE h[2];
h[0] = m_mutex;
h[1] = m_writeEvent;
switch (WaitForMultipleObjects(2, h, TRUE, 1))
{
case WAIT_OBJECT_0:
case WAIT_OBJECT_0 + 1:
--m_writersWaiting;
++m_readers;
++m_writers;
ResetEvent(m_readEvent);
ResetEvent(m_writeEvent);
ReleaseMutex(m_mutex);
assert(m_writers == 1);
return true;
case WAIT_TIMEOUT:
RemoveWriter();
default:
RemoveWriter();
cout<<"cannot lock reader/writer lock"<<endl;
}
return false;
}

void CRWLockImpl::UnlockImpl()
{
switch (WaitForSingleObject(m_mutex, INFINITE))
{
case WAIT_OBJECT_0:
m_writers = 0;
if (m_writersWaiting == 0) SetEvent(m_readEvent);
if (--m_readers == 0) SetEvent(m_writeEvent);
ReleaseMutex(m_mutex);
break;
default:
cout<<"cannot unlock reader/writer lock"<<endl;
}
}

DWORD CRWLockImpl::TryReadLockOnce()
{
HANDLE h[2];
h[0] = m_mutex;
h[1] = m_readEvent;
DWORD result = WaitForMultipleObjects(2, h, TRUE, 1);
switch (result)
{
case WAIT_OBJECT_0:
case WAIT_OBJECT_0 + 1:
++m_readers;
ResetEvent(m_writeEvent);
ReleaseMutex(m_mutex);
assert(m_writers == 0);
return result;
case WAIT_TIMEOUT:
default:
cout<<"cannot lock reader/writer lock"<<endl;
}
return result;
}

下边是测试代码

[cpp]
view plaincopy

// MyRWLockWin32.cpp : 定义控制台应用程序的入口点。
//

#include "RWLockImpl.h"

//创建一个读写锁对象
CMyRWLock g_myRWLock;
volatile int g_counter = 0;

//线程函数
unsigned int __stdcall StartThread(void *pParam)
{
int lastCount = 0;
for (int i = 0; i < 10000; ++i)
{
g_myRWLock.ReadLock();
lastCount = g_counter;
//在读锁域,两个线程不断循环交替访问全局变量g_counter
for (int k = 0; k < 100; ++k)
{
if (g_counter != lastCount)
cout<<"the value of g_counter has been updated."<<endl;
Sleep(0);
}
g_myRWLock.Unlock();

g_myRWLock.WriteLock();
//在写锁域,只有一个线程可以修改全局变量g_counter的值
for (int k = 0; k < 100; ++k)
{
--g_counter;
Sleep(0);
}
for (int k = 0; k < 100; ++k)
{
++g_counter;
Sleep(0);
}
++g_counter;
if (g_counter <= lastCount)
cout<<"the value of g_counter is error."<<endl;
g_myRWLock.Unlock();
}

return (unsigned int)0;
}

int main(int argc, char* argv[])
{
HANDLE hThread1, hThread2;
unsigned int uiThreadId1, uiThreadId2;

//创建两个工作线程
hThread1 = (HANDLE)_beginthreadex(NULL, 0, &StartThread, (void *)NULL, 0, &uiThreadId1);
hThread2 = (HANDLE)_beginthreadex(NULL, 0, &StartThread, (void *)NULL, 0, &uiThreadId2);

//等待线程结束
DWORD dwRet = WaitForSingleObject(hThread1,INFINITE);
if ( dwRet == WAIT_TIMEOUT )
{
TerminateThread(hThread1,0);
}
dwRet = WaitForSingleObject(hThread2,INFINITE);
if ( dwRet == WAIT_TIMEOUT )
{
TerminateThread(hThread2,0);
}

//关闭线程句柄,释放资源
CloseHandle(hThread1);
CloseHandle(hThread2);

assert (g_counter == 20000);

system("pause");
return 0;
}

链接:/article/2269256.html
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: