您的位置:首页 > 其它

矩阵的基本概念

2013-12-25 21:07 190 查看
矩阵的逆:

逆矩阵: 设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E。 则我们称B是A的逆矩阵,而A则被称为可逆矩阵。

A是可逆矩阵的充分必要条件是∣A∣≠0,即可逆矩阵就是非奇异矩阵。(当∣A∣=0时,A称为奇异矩阵)

奇异矩阵:

奇异矩阵是线性代数的概念,就是对应的行列式等于0的矩阵。首先,看这个矩阵是不是方阵(即行数和列数相等的矩阵。若行数和列数不相等,那就谈不上奇异矩阵和非奇异矩阵)。 然后,再看此方阵的行列式|A|是否等于0,若等于0,称矩阵A为奇异矩阵;若不等于0,称矩阵A为非奇异矩阵。
同时,由|A|≠0可知矩阵A可逆,这样可以得出另外一个重要结论:可逆矩阵就是非奇异矩阵,非奇异矩阵也是可逆矩阵。 如果A为奇异矩阵,则AX=0有无穷解,AX=b有无穷解或者无解。如果A为非奇异矩阵,则AX=0有且只有唯一零解,AX=b有唯一解。

用途示例

非奇异矩阵还可以表示为若干个初等矩阵的乘积,证明中往往会被用到。
如果A(n×n)为奇异矩阵(singular matrix)<=> A的秩Rank(A)<n.
如果A(n×n)为非奇异矩阵(nonsingular matrix)<=> A满秩,Rank(A)=n.

一个方阵非奇异当且仅当它的行列式不为零。
一个方阵非奇异当且仅当它代表的线性变换是个自同构。
一个矩阵半正定当且仅当它的每个特征值大于或等于零。
一个矩阵正定当且仅当它的每个特征值都大于零。
转置矩阵:
把矩阵A的行换成相应的列,得到的新矩阵称为A的转置矩阵,记作AT或A。

正交矩阵:

如果:AA'=E(E为单位矩阵,A'表示“矩阵A的转置矩阵”。)或A′A=E,则n阶实矩阵A称为正交矩阵, 若A为单位正交阵,则满足以下条件:
1) AT是正交矩阵
2)

(E为单位矩阵)
3) A的各行是单位向量且两两正交
4) A的各列是单位向量且两两正交
5) (Ax,Ay)=(x,y) x,y∈R
6) |A| = 1或-1


基底:

若α1,α2,...,αn为向量空间Rn的一线性无关的向量组,且Rn中任一向量均可由α1,α2,...,αn线性表示,则称α1,α2,...,αn 为向量空间Rn的一个基底。

补充:

1.基底的特殊情况是 α1,α2,...,αn 相互正交而且都是单位向量,最最特殊的情况是单位矩阵E

2.基底包含的向量个数=Rn 向量空间维数 <=向量维数。


坐标:

设α1,α2,...,αn 为向量空间Rn的一组基,对任意α属于Rn,存在唯一一组数,使

α=x1α1+x2α2+...+xnαn=[α1,α2,...,αn]X

则X=(x1,x2,...,xn)是向量α在基α1,α2,...,αn 上的坐标。

补充:

1.基底与坐标的线性组合就是坐标表示的向量。


基变换与坐标变换

若α1,α2,...,αn 和β1, β2,...,βn 为向量空间Rn 中的两组基,

则:

[β1, β2,...,βn]=[α1,α2,...,αn ]P



[α1,α2,...,αn ]=[β1, β2,...,βn]P-1

称为基变换公式.其中可逆矩阵P称为由基α1,α2,...,αn 到基 β1, β2,...,βn 的过渡矩阵。若向量α在基α1,α2,...,αn 和基 β1, β2,...,βn 上的坐标分别为X和Y,

即: 

α=[α1,α2,...,αn]X =[β1, β2,...,βn]Y=[α1,α2,...,αn ]PY,

则:

X=PY



Y=P-1 X

称为坐标转换公式。

补充:

1.可逆矩阵P 的特殊情况为正交矩阵,正交转换矩阵的特性是可以保持原向量之间的相对位置。

2.单就坐标而言,X是Y在P行向量上的投影。

3.当α1,α2,...,αn 是单位矩阵E,这时:

 α=[α1,α2,...,αn]X=EX=X

[β1, β2,...,βn]=[α1,α2,...,αn ]P=E*P=P

 α=[β1, β2,...,βn]Y=PY

 而P是正交矩阵时,这就是PCA和SVD的应用环境。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: