您的位置:首页 > 产品设计 > UI/UE

图像分类丨浅析轻量级网络「SqueezeNet、MobileNet、ShuffleNet」

2019-05-24 10:48 2927 查看

前言

深度卷积网络除了准确度,计算复杂度也是考虑的重要指标。本文列出了近年主流的轻量级网络,简单地阐述了它们的思想。由于本人水平有限,对这部分的理解还不够深入,还需要继续学习和完善。

最后我参考部分列出来的文章都写的非常棒,建议继续阅读。

复杂度分析

  • 理论计算量(FLOPs):浮点运算次数(FLoating-point Operation)
  • 参数数量(params):单位通常为M,用float32表示。

对比

  • std conv(主要贡献计算量) params:\(k_h\times k_w\times c_{in}\times c_{out}\)
  • FLOPs:\(k_h\times k_w\times c_{in}\times c_{out}\times H\times W\)
  • fc(主要贡献参数量)
      params:\(c_{in}\times c_{out}\)
    • FLOPs:\(c_{in}\times c_{out}\)
  • group conv
      params:\((k_h\times k_w\times c_{in}/g \times c_{out}/g)\times g=k_h\times k_w\times c_{in}\times c_{out}/g\)
    • FLOPs:\(k_h\times k_w\times c_{in}\times c_{out}\times H\times W/g\)
  • depth-wise conv
      params:\(k_h\times k_w\times c_{in}\times c_{out}/c_{in}=k_h\times k_w\times c_{out}\)
    • FLOPs:\(k_h\times k_w\times c_{out}\times H\times W\)

    SqueezeNet

    SqueezeNet:AlexNet-level accuracy with 50x fewer parameters and <0.5MB

    核心思想

    • 提出Fire module,包含两部分:squeeze和expand层。
        squeeze为1x1卷积,\(S_1\lt M\),从而压缩
      1. Expand层为e1个1x1卷积和e3个3x3卷积,分别输出\(H\times W\times e1\)和\(H\times W \times e_2\)。
      2. concat得到\(H\times W \times (e_1+e_3)\)

    class Fire(nn.Module):
    def __init__(self, in_channel, out_channel, squzee_channel):
    super().__init__()
    self.squeeze = nn.Sequential(
    nn.Conv2d(in_channel, squzee_channel, 1),
    nn.BatchNorm2d(squzee_channel),
    nn.ReLU(inplace=True)
    )
    
    self.expand_1x1 = nn.Sequential(
    nn.Conv2d(squzee_channel, int(out_channel / 2), 1),
    nn.BatchNorm2d(int(out_channel / 2)),
    nn.ReLU(inplace=True)
    )
    
    self.expand_3x3 = nn.Sequential(
    nn.Conv2d(squzee_channel, int(out_channel / 2), 3, padding=1),
    nn.BatchNorm2d(int(out_channel / 2)),
    nn.ReLU(inplace=True)
    )
    
    def forward(self, x):
    x = self.squeeze(x)
    x = torch.cat([
    self.expand_1x1(x),
    self.expand_3x3(x)
    ], 1)
    
    return x

    网络架构

    class SqueezeNet(nn.Module):
    """mobile net with simple bypass"""
    def __init__(self, class_num=100):
    super().__init__()
    self.stem = nn.Sequential(
    nn.Conv2d(3, 96, 3, padding=1),
    nn.BatchNorm2d(96),
    nn.ReLU(inplace=True),
    nn.MaxPool2d(2, 2)
    )
    self.fire2 = Fire(96, 128, 16)
    self.fire3 = Fire(128, 128, 16)
    self.fire4 = Fire(128, 256, 32)
    self.fire5 = Fire(256, 256, 32)
    self.fire6 = Fire(256, 384, 48)
    self.fire7 = Fire(384, 384, 48)
    self.fire8 = Fire(384, 512, 64)
    self.fire9 = Fire(512, 512, 64)
    
    self.conv10 = nn.Conv2d(512, class_num, 1)
    self.avg = nn.AdaptiveAvgPool2d(1)
    self.maxpool = nn.MaxPool2d(2, 2)
    
    def forward(self, x):
    x = self.stem(x)
    
    f2 = self.fire2(x)
    f3 = self.fire3(f2) + f2
    f4 = self.fire4(f3)
    f4 = self.maxpool(f4)
    
    f5 = self.fire5(f4) + f4
    f6 = self.fire6(f5)
    f7 = self.fire7(f6) + f6
    f8 = self.fire8(f7)
    f8 = self.maxpool(f8)
    
    f9 = self.fire9(f8)
    c10 = self.conv10(f9)
    
    x = self.avg(c10)
    x = x.view(x.size(0), -1)
    
    return x
    
    def squeezenet(class_num=100):
    return SqueezeNet(class_num=class_num)

    实验结果

    • 注意:0.5MB是模型压缩的结果。

    MobileNetV1

    MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

    核心思想

    1. 使用了depth-wise separable conv降低了参数和计算量。

    2. 提出两个超参数Width Multiplier和Resolution Multiplier来平衡时间和精度。

    • depth-wise separable conv

    Standard Conv

    \(D_K\):kernel size

    \(D_F\):feature map size

    \(M\):input channel number

    \(N\):output channel number

    参数量:\(D_K\times D_K \times M \times N (3\times3\times 3\times 2)\)

    计算量:\(D_K \cdot D_K \cdot M \cdot N \cdot D_F \cdot D_F\)

    用depth-wise separable conv来替代std conv,depth-wise conv分解为depthwise conv和pointwise conv。

    std conv输出的每个通道的feature包含了输入所有通道的feature,depth-wise separable conv没有办法做到,所以需要用pointwise conv来结合不同通道的feature。

    Depthwise Conv

    对输入feature的每个通道单独做卷积操作,得到每个通道对应的输出feature。

    参数量:\(D_K\times D_K \times M(3\times 3\times 3)\)

    计算量:\(D_K \cdot D_K \cdot M \cdot D_F \cdot D_F\)

    Pointwise Conv

    将depthwise conv的输出,即不同通道的feature map结合起来,从而达到和std conv一样的效果。

    参数量:\(1\times 1 \times M \times N(1\times1\times3\times2)\)

    计算量:\(M\cdot N \cdot D_F \cdot D_F\)

    从而总计算量为\(D_K \cdot D_K \cdot M \cdot D_F \cdot D_F+M\cdot\ N\cdot D_F \cdot D_F\)

    通过拆分,相当于将standard conv计算量压缩为:

    • 代码实现

      BasicConv2d & DepthSeperableConv2d

    class DepthSeperabelConv2d(nn.Module):
    def __init__(self, input_channels, output_channels, kernel_size, **kwargs):
    super().__init__()
    self.depthwise = nn.Sequential(
    nn.Conv2d(
    input_channels,
    input_channels,
    kernel_size,
    groups=input_channels,
    **kwargs),
    nn.BatchNorm2d(input_channels),
    nn.ReLU(inplace=True)
    )
    self.pointwise = nn.Sequential(
    nn.Conv2d(input_channels, output_channels, 1),
    nn.BatchNorm2d(output_channels),
    nn.ReLU(inplace=True)
    )
    def forward(self, x):
    x = self.depthwise(x)
    x = self.pointwise(x)
    
    return x
    
    class BasicConv2d(nn.Module):
    def __init__(self, input_channels, output_channels, kernel_size, **kwargs):
    super().__init__()
    self.conv = nn.Conv2d(
    input_channels, output_channels, kernel_size, **kwargs)
    self.bn = nn.BatchNorm2d(output_channels)
    self.relu = nn.ReLU(inplace=True)
    
    def forward(self, x):
    x = self.conv(x)
    x = self.bn(x)
    x = self.relu(x)
    
    return x
    • Two hyper-parameters
    1. Width Multiplier \(\alpha\):以系数\(1,0.75,0.5和0.25\)乘以input、output channel

    计算量变为\(D_K \cdot D_K \cdot \alpha M \cdot D_F \cdot D_F+\alpha M\cdot\ \alpha N\cdot D_F \cdot D_F\)

    1. Resoltion Multiplier \(\rho\):将输入分辨率变为\(224,192,160或128\)。

    计算量变为\(D_K \cdot D_K \cdot \alpha M \cdot \rho D_F \cdot \rho D_F+\alpha M\cdot\ \alpha N\cdot \rho D_F \cdot \rho D_F\)

    网络架构

    def mobilenet(alpha=1, class_num=100):
    return MobileNet(alpha, class_num)
    
    class MobileNet(nn.Module):
    """
    Args:
    width multipler: The role of the width multiplier α is to thin
    a network uniformly at each layer. For a given
    layer and width multiplier α, the number of
    input channels M becomes αM and the number of
    output channels N becomes αN.
    """
    def __init__(self, width_multiplier=1, class_num=100):
    super().__init__()
    
    alpha = width_multiplier
    self.stem = nn.Sequential(
    BasicConv2d(3, int(32 * alpha), 3, padding=1, bias=False),
    DepthSeperabelConv2d(
    int(32 * alpha),
    int(64 * alpha),
    3,
    padding=1,
    bias=False
    )
    )
    
    #downsample
    self.conv1 = nn.Sequential(
    DepthSeperabelConv2d(
    int(64 * alpha),
    int(128 * alpha),
    3,
    stride=2,
    padding=1,
    bias=False
    ),
    DepthSeperabelConv2d(
    int(128 * alpha),
    int(128 * alpha),
    3,
    padding=1,
    bias=False
    )
    )
    #downsample
    self.conv2 = nn.Sequential(
    DepthSeperabelConv2d(
    int(128 * alpha),
    int(256 * alpha),
    3,
    stride=2,
    padding=1,
    bias=False
    ),
    DepthSeperabelConv2d(
    int(256 * alpha),
    int(256 * alpha),
    3,
    padding=1,
    bias=False
    )
    )
    #downsample
    self.conv3 = nn.Sequential(
    DepthSeperabelConv2d(
    int(256 * alpha),
    int(512 * alpha),
    3,
    stride=2,
    padding=1,
    bias=False
    ),
    DepthSeperabelConv2d(
    int(512 * alpha),
    int(512 * alpha),
    3,
    padding=1,
    bias=False
    ),
    DepthSeperabelConv2d(
    int(512 * alpha),
    int(512 * alpha),
    3,
    padding=1,
    bias=False
    ),
    DepthSeperabelConv2d(
    int(512 * alpha),
    int(512 * alpha),
    3,
    padding=1,
    bias=False
    ),
    DepthSeperabelConv2d(
    int(512 * alpha),
    int(512 * alpha),
    3,
    padding=1,
    bias=False
    ),
    DepthSeperabelConv2d(
    int(512 * alpha),
    int(512 * alpha),
    3,
    padding=1,
    bias=False
    )
    )
    #downsample
    self.conv4 = nn.Sequential(
    DepthSeperabelConv2d(
    int(512 * alpha),
    int(1024 * alpha),
    3,
    stride=2,
    padding=1,
    bias=False
    ),
    DepthSeperabelConv2d(
    int(1024 * alpha),
    int(1024 * alpha),
    3,
    padding=1,
    bias=False
    )
    )
    self.fc = nn.Linear(int(1024 * alpha), class_num)
    self.avg = nn.AdaptiveAvgPool2d(1)
    
    def forward(self, x):
    x = self.stem(x)
    
    x = self.conv1(x)
    x = self.conv2(x)
    x = self.conv3(x)
    x = self.conv4(x)
    
    x = self.avg(x)
    x = x.view(x.size(0), -1)
    x = self.fc(x)
    return x

    实验结果

    MobileNetV2

    核心思想

    • Inverted residual block:引入残差结构和bottleneck层。
    • Linear Bottlenecks:ReLU会破坏信息,故去掉第二个Conv1x1后的ReLU,改为线性神经元。

    MobileNetv2与其他网络对比

    MobileNetV2 block

    • 代码实现
    class LinearBottleNeck(nn.Module):
    def __init__(self, in_channels, out_channels, stride, t=6, class_num=100):
    super().__init__()
    
    self.residual = nn.Sequential(
    nn.Conv2d(in_channels, in_channels * t, 1),
    nn.BatchNorm2d(in_channels * t),
    nn.ReLU6(inplace=True),
    
    nn.Conv2d(in_channels * t, in_channels * t, 3, stride=stride, padding=1, groups=in_channels * t),
    nn.BatchNorm2d(in_channels * t),
    nn.ReLU6(inplace=True),
    
    nn.Conv2d(in_channels * t, out_channels, 1),
    nn.BatchNorm2d(out_channels)
    )
    
    self.stride = stride
    self.in_channels = in_channels
    self.out_channels = out_channels
    
    def forward(self, x):
    residual = self.residual(x)
    
    if self.stride == 1 and self.in_channels == self.out_channels:
    residual += x
    
    return residual

    网络架构

    class MobileNetV2(nn.Module):
    def __init__(self, class_num=100):
    super().__init__()
    
    self.pre = nn.Sequential(
    nn.Conv2d(3, 32, 1, padding=1),
    nn.BatchNorm2d(32),
    nn.ReLU6(inplace=True)
    )
    
    self.stage1 = LinearBottleNeck(32, 16, 1, 1)
    self.stage2 = self._make_stage(2, 16, 24, 2, 6)
    self.stage3 = self._make_stage(3, 24, 32, 2, 6)
    self.stage4 = self._make_stage(4, 32, 64, 2, 6)
    self.stage5 = self._make_stage(3, 64, 96, 1, 6)
    self.stage6 = self._make_stage(3, 96, 160, 1, 6)
    self.stage7 = LinearBottleNeck(160, 320, 1, 6)
    
    self.conv1 = nn.Sequential(
    nn.Conv2d(320, 1280, 1),
    nn.BatchNorm2d(1280),
    nn.ReLU6(inplace=True)
    )
    
    self.conv2 = nn.Conv2d(1280, class_num, 1)
    
    def forward(self, x):
    x = self.pre(x)
    x = self.stage1(x)
    x = self.stage2(x)
    x = self.stage3(x)
    x = self.stage4(x)
    x = self.stage5(x)
    x = self.stage6(x)
    x = self.stage7(x)
    x = self.conv1(x)
    x = F.adaptive_avg_pool2d(x, 1)
    x = self.conv2(x)
    x = x.view(x.size(0), -1)
    
    return x
    
    def _make_stage(self, repeat, in_channels, out_channels, stride, t):
    
    layers = []
    layers.append(LinearBottleNeck(in_channels, out_channels, stride, t))
    
    while repeat - 1:
    layers.append(LinearBottleNeck(out_channels, out_channels, 1, t))
    repeat -= 1
    
    return nn.Sequential(*layers)
    
    def mobilenetv2():
    return MobileNetV2()

    实验结果

    ShuffleNetV1

    核心思想

    • 利用group convolution和channel shuffle来减少模型参数量。

    • ShuffleNet unit

    从ResNet bottleneck 演化得到shuffleNet unit

    1. (a)带depth-wise conv的bottleneck unit
    2. (b)将1x1conv换成1x1Gconv,并在第一个1x1Gconv后增加一个channel shuffle。
    3. (c)旁路增加AVG pool,减小feature map的分辨率;分辨率小了,最后不采用add而是concat,从而弥补分辨率减小带来的信息损失。

    • 代码实现
    class ChannelShuffle(nn.Module):
    
    def __init__(self, groups):
    super().__init__()
    self.groups = groups
    
    def forward(self, x):
    batchsize, channels, height, width = x.data.size()
    channels_per_group = int(channels / self.groups)
    
    #"""suppose a convolutional layer with g groups whose output has
    #g x n channels; we first reshape the output channel dimension
    #into (g, n)"""
    x = x.view(batchsize, self.groups, channels_per_group, height, width)
    
    #"""transposing and then flattening it back as the input of next layer."""
    x = x.transpose(1, 2).contiguous()
    x = x.view(batchsize, -1, height, width)
    
    return x
    
    class ShuffleNetUnit(nn.Module):
    
    def __init__(self, input_channels, output_channels, stage, stride, groups):
    super().__init__()
    
    #"""Similar to [9], we set the number of bottleneck channels to 1/4
    #of the output channels for each ShuffleNet unit."""
    self.bottlneck = nn.Sequential(
    PointwiseConv2d(
    input_channels,
    int(output_channels / 4),
    groups=groups
    ),
    nn.ReLU(inplace=True)
    )
    
    #"""Note that for Stage 2, we do not apply group convolution on the first pointwise
    #layer because the number of input channels is relatively small."""
    if stage == 2:
    self.bottlneck = nn.Sequential(
    PointwiseConv2d(
    input_channels,
    int(output_channels / 4),
    groups=groups
    ),
    nn.ReLU(inplace=True)
    )
    
    self.channel_shuffle = ChannelShuffle(groups)
    
    self.depthwise = DepthwiseConv2d(
    int(output_channels / 4),
    int(output_channels / 4),
    3,
    groups=int(output_channels / 4),
    stride=stride,
    padding=1
    )
    
    self.expand = PointwiseConv2d(
    int(output_channels / 4),
    output_channels,
    groups=groups
    )
    
    self.relu = nn.ReLU(inplace=True)
    self.fusion = self._add
    self.shortcut = nn.Sequential()
    
    #"""As for the case where ShuffleNet is applied with stride,
    #we simply make two modifications (see Fig 2 (c)):
    #(i) add a 3 × 3 average pooling on the shortcut path;
    #(ii) replace the element-wise addition with channel concatenation,
    #which makes it easy to enlarge channel dimension with little extra
    #computation cost.
    if stride != 1 or input_channels != output_channels:
    self.shortcut = nn.AvgPool2d(3, stride=2, padding=1)
    
    self.expand = PointwiseConv2d(
    int(output_channels / 4),
    output_channels - input_channels,
    groups=groups
    )
    
    self.fusion = self._cat
    
    def _add(self, x, y):
    return torch.add(x, y)
    
    def _cat(self, x, y):
    return torch.cat([x, y], dim=1)
    
    def forward(self, x):
    shortcut = self.shortcut(x)
    
    shuffled = self.bottlneck(x)
    shuffled = self.channel_shuffle(shuffled)
    shuffled = self.depthwise(shuffled)
    shuffled = self.expand(shuffled)
    
    output = self.fusion(shortcut, shuffled)
    output = self.relu(output)
    
    return output

    网络架构

    • 代码实现
    class ShuffleNet(nn.Module):
    
    def __init__(self, num_blocks, num_classes=100, groups=3):
    super().__init__()
    
    if groups == 1:
    out_channels = [24, 144, 288, 567]
    elif groups == 2:
    out_channels = [24, 200, 400, 800]
    elif groups == 3:
    out_channels = [24, 240, 480, 960]
    elif groups == 4:
    out_channels = [24, 272, 544, 1088]
    elif groups == 8:
    out_channels = [24, 384, 768, 1536]
    
    self.conv1 = BasicConv2d(3, out_channels[0], 3, padding=1, stride=1)
    self.input_channels = out_channels[0]
    
    self.stage2 = self._make_stage(
    ShuffleNetUnit,
    num_blocks[0],
    out_channels[1],
    stride=2,
    stage=2,
    groups=groups
    )
    
    self.stage3 = self._make_stage(
    ShuffleNetUnit,
    num_blocks[1],
    out_channels[2],
    stride=2,
    stage=3,
    groups=groups
    )
    
    self.stage4 = self._make_stage(
    ShuffleNetUnit,
    num_blocks[2],
    out_channels[3],
    stride=2,
    stage=4,
    groups=groups
    )
    
    self.avg = nn.AdaptiveAvgPool2d((1, 1))
    self.fc = nn.Linear(out_channels[3], num_classes)
    
    def forward(self, x):
    x = self.conv1(x)
    x = self.stage2(x)
    x = self.stage3(x)
    x = self.stage4(x)
    x = self.avg(x)
    x = x.view(x.size(0), -1)
    x = self.fc(x)
    
    return x
    
    def _make_stage(self, block, num_blocks, output_channels, stride, stage, groups):
    """make shufflenet stage
    
    Args:
    block: block type, shuffle unit
    out_channels: output depth channel number of this stage
    num_blocks: how many blocks per stage
    stride: the stride of the first block of this stage
    stage: stage index
    groups: group number of group convolution
    Return:
    return a shuffle net stage
    """
    strides = [stride] + [1] * (num_blocks - 1)
    
    stage = []
    
    for stride in strides:
    stage.append(
    block(
    self.input_channels,
    output_channels,
    stride=stride,
    stage=stage,
    groups=groups
    )
    )
    self.input_channels = output_channels
    
    return nn.Sequential(*stage)
    
    def shufflenet():
    return ShuffleNet([4, 8, 4])

    实验结果

    ShuffleNetV2

    核心思想

    • 基于四条准则,改进了SuffleNetv1

      G1)同等通道最小化内存访问量(1x1卷积平衡输入和输出通道大小)

      G2)过量使用组卷积增加内存访问量(谨慎使用组卷积)

      G3)网络碎片化降低并行度(避免网络碎片化)

      G4)不能忽略元素级操作(减少元素级运算)

    • 代码实现
    def channel_split(x, split):
    """split a tensor into two pieces along channel dimension
    Args:
    x: input tensor
    split:(int) channel size for each pieces
    """
    assert x.size(1) == split * 2
    return torch.split(x, split, dim=1)
    
    def channel_shuffle(x, groups):
    """channel shuffle operation
    Args:
    x: input tensor
    groups: input branch number
    """
    
    batch_size, channels, height, width = x.size()
    channels_per_group = int(channels / groups)
    
    x = x.view(batch_size, groups, channels_per_group, height, width)
    x = x.transpose(1, 2).contiguous()
    x = x.view(batch_size, -1, height, width)
    
    return x
    
    class ShuffleUnit(nn.Module):
    
    def __init__(self, in_channels, out_channels, stride):
    super().__init__()
    
    self.stride = stride
    self.in_channels = in_channels
    self.out_channels = out_channels
    
    if stride != 1 or in_channels != out_channels:
    self.residual = nn.Sequential(
    nn.Conv2d(in_channels, in_channels, 1),
    nn.BatchNorm2d(in_channels),
    nn.ReLU(inplace=True),
    nn.Conv2d(in_channels, in_channels, 3, stride=stride, padding=1, groups=in_channels),
    nn.BatchNorm2d(in_channels),
    nn.Conv2d(in_channels, int(out_channels / 2), 1),
    nn.BatchNorm2d(int(out_channels / 2)),
    nn.ReLU(inplace=True)
    )
    
    self.shortcut = nn.Sequential(
    nn.Conv2d(in_channels, in_channels, 3, stride=stride, padding=1, groups=in_channels),
    nn.BatchNorm2d(in_channels),
    nn.Conv2d(in_channels, int(out_channels / 2), 1),
    nn.BatchNorm2d(int(out_channels / 2)),
    nn.ReLU(inplace=True)
    )
    else:
    self.shortcut = nn.Sequential()
    
    in_channels = int(in_channels / 2)
    self.residual = nn.Sequential(
    nn.Conv2d(in_channels, in_channels, 1),
    nn.BatchNorm2d(in_channels),
    nn.ReLU(inplace=True),
    nn.Conv2d(in_channels, in_channels, 3, stride=stride, padding=1, groups=in_channels),
    nn.BatchNorm2d(in_channels),
    nn.Conv2d(in_channels, in_channels, 1),
    nn.BatchNorm2d(in_channels),
    nn.ReLU(inplace=True)
    )
    
    def forward(self, x):
    
    if self.stride == 1 and self.out_channels == self.in_channels:
    shortcut, residual = channel_split(x, int(self.in_channels / 2))
    else:
    shortcut = x
    residual = x
    
    shortcut = self.shortcut(shortcut)
    residual = self.residual(residual)
    x = torch.cat([shortcut, residual], dim=1)
    x = channel_shuffle(x, 2)
    
    return x

    网络架构

    class ShuffleNetV2(nn.Module):
    
    def __init__(self, ratio=1, class_num=100):
    super().__init__()
    if ratio == 0.5:
    out_channels = [48, 96, 192, 1024]
    elif ratio == 1:
    out_channels = [116, 232, 464, 1024]
    elif ratio == 1.5:
    out_channels = [176, 352, 704, 1024]
    elif ratio == 2:
    out_channels = [244, 488, 976, 2048]
    else:
    ValueError('unsupported ratio number')
    
    self.pre = nn.Sequential(
    nn.Conv2d(3, 24, 3, padding=1),
    nn.BatchNorm2d(24)
    )
    
    self.stage2 = self._make_stage(24, out_channels[0], 3)
    self.stage3 = self._make_stage(out_channels[0], out_channels[1], 7)
    self.stage4 = self._make_stage(out_channels[1], out_channels[2], 3)
    self.conv5 = nn.Sequential(
    nn.Conv2d(out_channels[2], out_channels[3], 1),
    nn.BatchNorm2d(out_channels[3]),
    nn.ReLU(inplace=True)
    )
    
    self.fc = nn.Linear(out_channels[3], class_num)
    
    def forward(self, x):
    x = self.pre(x)
    x = self.stage2(x)
    x = self.stage3(x)
    x = self.stage4(x)
    x = self.conv5(x)
    x = F.adaptive_avg_pool2d(x, 1)
    x = x.view(x.size(0), -1)
    x = self.fc(x)
    
    return x
    
    def _make_stage(self, in_channels, out_channels, repeat):
    layers = []
    layers.append(ShuffleUnit(in_channels, out_channels, 2))
    
    while repeat:
    layers.append(ShuffleUnit(out_channels, out_channels, 1))
    repeat -= 1
    
    return nn.Sequential(*layers)
    
    def shufflenetv2():
    return ShuffleNetV2()

    实验结果

    参考

    卷积神经网络的复杂度分析

    纵览轻量化卷积神经网络:SqueezeNet、MobileNet、ShuffleNet、Xception

    CVPR 2018 高效小网络探密(上)

    CVPR 2018 高效小网络探密(下)

    http://machinethink.net/blog/mobilenet-v2/

    轻量级CNN网络之MobileNetv2

    ShuffleNetV2:轻量级CNN网络中的桂冠

    轻量化网络ShuffleNet MobileNet v1/v2 解析

    Roofline Model与深度学习模型的性能分析

  • 内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
    标签: