您的位置:首页 > 编程语言 > Python开发

Python中的支持向量机SVM的使用(有实例)

2017-12-23 10:16 495 查看
转自:http://www.cnblogs.com/luyaoblog/p/6775342.html

除了在Matlab中使用PRTools工具箱中的svm算法,Python中一样可以使用支持向量机做分类。因为Python中的sklearn库也集成了SVM算法,本文的运行环境是Pycharm。

一、导入sklearn算法包

  Scikit-Learn库已经实现了所有基本机器学习的算法,具体使用详见官方文档说明:http://scikit-learn.org/stable/auto_examples/index.html#support-vector-machines

  skleran中集成了许多算法,其导入包的方式如下所示,

  逻辑回归:from sklearn.linear_model import LogisticRegression

朴素贝叶斯:from sklearn.naive_bayes import GaussianNB

  K-近邻:from sklearn.neighbors import KNeighborsClassifier

  决策树:from sklearn.tree import DecisionTreeClassifier

  支持向量机:from sklearn import svm

二、sklearn中svc的使用

(1)使用numpy中的loadtxt读入数据文件

  loadtxt()的使用方法:

  


  fname:文件路径。eg:C:/Dataset/iris.txt。

  dtype:数据类型。eg:float、str等。

  delimiter:分隔符。eg:‘,’。

  converters:将数据列与转换函数进行映射的字典。eg:{1:fun},含义是将第2列对应转换函数进行转换。

  usecols:选取数据的列。

  以Iris兰花数据集为例子:

  由于从UCI数据库中下载的Iris原始数据集的样子是这样的,前四列为特征列,第五列为类别列,分别有三种类别Iris-setosa, Iris-versicolor, Iris-virginica。   

  


  当使用numpy中的loadtxt函数导入该数据集时,假设数据类型dtype为浮点型,但是很明显第五列的数据类型并不是浮点型。

  因此我们要额外做一个工作,即通过loadtxt()函数中的converters参数将第五列通过转换函数映射成浮点类型的数据。

  首先,我们要写出一个转换函数:

  接下来读入数据,converters={4: iris_type}中“4”指的是第5列:

  读入结果:

  


(2)将Iris分为训练集与测试集

  1. split(数据,分割位置,轴=1(水平分割) or 0(垂直分割))。

  2. x = x[:, :2]是为方便后期画图更直观,故只取了前两列特征值向量训练。

  3. sklearn.model_selection.train_test_split随机划分训练集与测试集。train_test_split(train_data,train_target,test_size=数字, random_state=0)

  参数解释:

  train_data:所要划分的样本特征集

  train_target:所要划分的样本结果

  test_size:样本占比,如果是整数的话就是样本的数量

  random_state:是随机数的种子。

  随机数种子:其实就是该组随机数的编号,在需要重复试验的时候,保证得到一组一样的随机数。比如你每次都填1,其他参数一样的情况下你得到的随机数组是一样的。但填0或不填,每次都会不一样。随机数的产生取决于种子,随机数和种子之间的关系遵从以下两个规则:种子不同,产生不同的随机数;种子相同,即使实例不同也产生相同的随机数。

(3)训练svm分类器

  kernel='linear'时,为线性核,C越大分类效果越好,但有可能会过拟合(defaul C=1)。

   kernel='rbf'时(default),为高斯核,gamma值越小,分类界面越连续;gamma值越大,分类界面越“散”,分类效果越好,但有可能会过拟合。

  decision_function_shape='ovr'时,为one v rest,即一个类别与其他类别进行划分,

  decision_function_shape='ovo'时,为one v one,即将类别两两之间进行划分,用二分类的方法模拟多分类的结果。

(4)计算svc分类器的准确率

结果为:



  如果想查看决策函数,可以通过decision_function()实现

结果为:





  decision_function中每一列的值代表距离各类别的距离。

(5)绘制图像

  1.确定坐标轴范围,x,y轴分别表示两个特征

  这里用到了mgrid()函数,该函数的作用这里简单介绍一下:

   假设假设目标函数F(x,y)=x+y。x轴范围1~3,y轴范围4~6,当绘制图像时主要分四步进行:

  【step1:x扩展】(朝右扩展):

[1 1 1]

   [2 2 2]

   [3 3 3]

  【step2:y扩展】(朝下扩展):

   [4 5 6]

   [4 5 6]

   [4 5 6]

  【step3:定位(xi,yi)】:

   [(1,4) (1,5) (1,6)]

   [(2,4) (2,5) (2,6)]

   [(3,4) (3,5) (3,6)]

  【step4:将(xi,yi)代入F(x,y)=x+y】

  因此这里x1, x2 = np.mgrid[x1_min:x1_max:200j, x2_min:x2_max:200j]后的结果为:

  


  再通过stack()函数,axis=1,生成测试点

  


  2.指定默认字体

  3.绘制

  pcolormesh(x,y,z,cmap)这里参数代入x1,x2,grid_hat,cmap=cm_light绘制的是背景。

   scatter中edgecolors是指描绘点的边缘色彩,s指描绘点的大小,cmap指点的颜色。

   xlim指图的边界。

最终结果为:



源码:
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签:  python 机器学习