您的位置:首页 > 其它

Halide学习笔记----Halide tutorial源码阅读7

2017-12-16 12:10 435 查看

Halide入门教程07

// Halide tutorial lesson 7: Multi-stage pipelines
// Halide教程第七课: 多阶段流水线

// On linux, you can compile and run it like so:
// 在linux平台,按如下方式编译执行
// g++ lesson_07*.cpp -g -std=c++11 -I ../include -I ../tools -L ../bin -lHalide `libpng-config --cflags --ldflags` -ljpeg -lpthread -ldl -o lesson_07
// LD_LIBRARY_PATH=../bin ./lesson_07

#include "Halide.h"
#include <stdio.h>

using namespace Halide;

// Support code for loading pngs.
#include "halide_image_io.h"
using namespace Halide::Tools;

int main(int argc, char **argv) {
// First we'll declare some Vars to use below.
Var x("x"), y("y"), c("c");

// Now we'll express a multi-stage pipeline that blurs an image
// first horizontally, and then vertically.
// 我们表示一个图像模糊的多阶段流水线,首先沿水平方向模糊,接着沿垂直方向模糊
{
// Take a color 8-bit input
Buffer<uint8_t> input = load_image("images/rgb.png");

// Upgrade it to 16-bit, so we can do math without it overflowing.
// 将输入数据升级到16比特,方式做数学计算时出现数据溢出
Func input_16("input_16");
input_16(x, y, c) = cast<uint16_t>(input(x, y, c));

// Blur it horizontally:
// 水平方向模糊
Func blur_x("blur_x");
blur_x(x, y, c) = (input_16(x-1, y, c) +
2 * input_16(x, y, c) +
input_16(x+1, y, c)) / 4;

// Blur it vertically:
// 垂直方向模糊
Func blur_y("blur_y");
blur_y(
4000
x, y, c) = (blur_x(x, y-1, c) +
2 * blur_x(x, y, c) +
blur_x(x, y+1, c)) / 4;

// Convert back to 8-bit.
// 图像数据转回8比特
Func output("output");
output(x, y, c) = cast<uint8_t>(blur_y(x, y, c));

// Each Func in this pipeline calls a previous one using
// familiar function call syntax (we've overloaded operator()
// on Func objects). A Func may call any other Func that has
// been given a definition. This restriction prevents
// pipelines with loops in them. Halide pipelines are always
// feed-forward graphs of Funcs.
// 在这个流水线中的每个函数采用相似的语法调用前面的函数。一个函数可以调用其他已经被定义过的
// 函数。这样的现实可以避免它们内部的循环。Halide的流水线是有函数构成的前向图结构。

// Now let's realize it...

// Buffer<uint8_t> result = output.realize(input.width(), input.height(), 3);

// Except that the line above is not going to work. Uncomment
// it to see what happens.

// Realizing this pipeline over the same domain as the input
// image requires reading pixels out of bounds in the input,
// because the blur_x stage reaches outwards horizontally, and
// the blur_y stage reaches outwards vertically. Halide
// detects this by injecting a piece of code at the top of the
// pipeline that computes the region over which the input will
// be read. When it starts to run the pipeline it first runs
// this code, determines that the input will be read out of
// bounds, and refuses to continue. No actual bounds checks
// occur in the inner loop; that would be slow.
//  在同样的像素区域实现上述算法,需要input图像边界意外的像素。Halide会通过在最外层的pipeline注射
// 一段代码来检查哪些input的像素数据将要被读取使用。当pipeline开始跑起来的时候,遇到输入数据超出
// 边界,那么Halide会拒绝继续执行下去。内存循环没有边界检查,因此这样会导致程序很慢。
//
// So what do we do? There are a few options. If we realize
// over a domain shifted inwards by one pixel, we won't be
// asking the Halide routine to read out of bounds. We saw how
// to do this in the previous lesson:
// 那么,如何解决这个问题呢?如果我们处理的区域所需要的input数据就没有超出input的边界,就没有这个
// 问题了。一种可行的办法,是采用上节课所使用的移动执行区域的办法,输出图像数据行和列减少。
Buffer<uint8_t> result(input.width()-2, input.height()-2, 3);
result.set_min(1, 1);
output.realize(result);

// Save the result. It should look like a slightly blurry
// parrot, and it should be two pixels narrower and two pixels
// shorter than the input image.
// 输出图像结果行和列均比input图像少2.
save_image(result, "blurry_parrot_1.png");

// This is usually the fastest way to deal with boundaries:
// don't write code that reads out of bounds :) The more
// general solution is our next example.
// 这样的方法是处理是处理边界问题最快的方法。但是如果想保持输出图像和原始图像大小一致
// 更常用的方法是下面的这个例子.
}

// The same pipeline, with a boundary condition on the input.
{
// Take a color 8-bit input
Buffer<uint8_t> input = load_image("images/rgb.png");

// This time, we'll wrap the input in a Func that prevents
// reading out of bounds:
// 将输入图像包裹在一个Func函数里面,防止图像访问像素点越界
Func clamped("clamped");

// Define an expression that clamps x to lie within the
// range [0, input.width()-1].
// 定义一个表达式,将x夹在[0, input.width()-1]闭区间里
Expr clamped_x = clamp(x, 0, input.width()-1);
// clamp(x, a, b) is equivalent to max(min(x, b), a).

// Similarly clamp y.
Expr clamped_y = clamp(y, 0, input.height()-1);
// Load from input at the clamped coordinates. This means that
// no matter how we evaluated the Func 'clamped', we'll never
// read out of bounds on the input. This is a clamp-to-edge
// style boundary condition, and is the simplest boundary
// condition to express in Halide.
// 从一个加紧限制的坐标中去读取input数据意味着无论如何去计算clamped函数,都不会越界读取input

clamped(x, y, c) = input(clamped_x, clamped_y, c);

// Defining 'clamped' in that way can be done more concisely
// using a helper function from the BoundaryConditions
// namespace like so:
// 上述定义clamped方法可以更简单地通过调用BoundaryConditions的成员函数达到目的
// clamped = BoundaryConditions::repeat_edge(input);
//
// These are important to use for other boundary conditions,
// because they are expressed in the way that Halide can best
// understand and optimize. When used correctly they are as
// cheap as having no boundary condition at all.
// 通过BoundaryConditions类的方式调用边界条件很重要,因为halide可以很好的理解边界条件并优化它们
// 正确使它们,可以向没有边界条件一样简单方便。

// Upgrade it to 16-bit, so we can do math without it
// overflowing. This time we'll refer to our new Func
// 'clamped', instead of referring to the input image
// directly.
Func input_16("input_16");
input_16(x, y, c) = cast<uint16_t>(clamped(x, y, c));

// The rest of the pipeline will be the same...

// Blur it horizontally:
Func blur_x("blur_x");
blur_x(x, y, c) = (input_16(x-1, y, c) +
2 * input_16(x, y, c) +
input_16(x+1, y, c)) / 4;

// Blur it vertically:
Func blur_y("blur_y");
blur_y(x, y, c) = (blur_x(x, y-1, c) +
2 * blur_x(x, y, c) +
blur_x(x, y+1, c)) / 4;

// Convert back to 8-bit.
Func output("output");
output(x, y, c) = cast<uint8_t>(blur_y(x, y, c));

// This time it's safe to evaluate the output over the some
// domain as the input, because we have a boundary condition.
// 因为有边界条件的处理,可以安全的进行算法调用,输出结果的尺寸也和原始图像一致。
Buffer<uint8_t> result = output.realize(input.width(), input.height(), 3);

// Save the result. It should look like a slightly blurry
// parrot, but this time it will be the same size as the
// input.
save_image(result, "blurry_parrot_2.png");
}

printf("Success!\n");
return 0;
}


编译并执行:

$ g++ lesson_07*.cpp -g -std=c++11 -I ../include -I ../tools -L ../bin -lHalide `libpng-config --cflags --ldflags` -ljpeg -lpthread -ldl -o lesson_07
$ ./lesson_07


输出图像的尺寸

内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: