您的位置:首页 > 其它

决策树

2017-07-03 17:03 120 查看

决策树性质

优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据。

缺点:可能会产生过度匹配问题。

使用数据类型:数值型和标称型。

决策树伪代码

输入:训练集 D={(x1,y1),(x2,y2),...,(xn,yn)}

   属性集 A={a1,a2,...,ad}

输出: 以node为根结点的一颗决策树

过程:createBranch()
检测数据集中的每个子项是否属于同一分类:
if so return 类标签;
else
寻找划分数据集的最好特征
划分数据集
创建分支节点
for 每个划分的子集
调用函数createBranch并增加返回结果到分支界结点中
return 分支结点


几点说明


最好的特征是指使得当前数据集信息增益最大的特征。

一般而言,信息增益越大,则意味着使用属性a来进行划分所获得的“纯度提升”越大。

决策树算法有可能出现过拟合现象。

数据集

from http://archive.ics.uci.edu/ml/machine-learning-databases/lenses/lenses.names

Number of Instances: 24

Number of Attributes: 4 (all nominal)

Attribute Information:

age of the patient:

(1) young

(2) pre-presbyopic

(3) presbyopic

spectacle prescription:

(1) myope

(2) hypermetrope

astigmatic:

(1) no

(2) yes

tear production rate:

(1) reduced

(2) normal

Class Distribution:

hard contact lenses: 4

soft contact lenses: 5

no contact lenses: 15

决策树算法python实现

main.py


import trees
import treePlotter

fr = open('lenses.txt')
lenses = [inst.strip().split('\t') for inst in fr.readlines()]
lensesLabels = ['age', 'prescript', 'astigmatic', 'tearRate']
lensesTree = trees.createTree(lenses, lensesLabels)
treePlotter.createPlot(lensesTree)


trees.createTree


#input:DataSet, Attributes
#output;decision tree
def createTree(dataSet,labels):
classList = [example[-1] for example in dataSet]
if classList.count(classList[0]) == len(classList):
return classList[0] #stop splitting when all of the classes are equal
if len(dataSet[0]) == 1: #stop splitting when there are no more features in dataSet
return majorityCnt(classList)
bestFeat = chooseBestFeatureToSplit(dataSet)
bestFeatLabel = labels[bestFeat]
myTree = {bestFeatLabel:{}}
del(labels[bestFeat])
featValues = [example[bestFeat] for example in dataSet]
uniqueVals = set(featValues)
for value in uniqueVals:
subLabels = labels[:]       #copy all of labels, so trees don't mess up existing labels
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)
return myTree


trees.majorityCnt


#input:list
#output:the most frequent num in the list
#algorithm:hash
def majorityCnt(classList):
classCount={}
for vote in classList:
if vote not in classCount.keys(): classCount[vote] = 0
classCount[vote] += 1
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]


trees.chooseBestFeatureToSplit


信息增益: Gain(D,a)=Ent(D)−∑Vv=1|Dv|DEnt(Dv)

D:待划分的数据集合;

a:划分当前数据集的特征;

V:当前特征的离散取值个数。

#input: dataSet
#output: current bestFeature
#algorithm: find the feature with best information gain
def chooseBestFeatureToSplit(dataSet):
numFeatures = len(dataSet[0]) - 1      #the last column is used for the labels
baseEntropy = calcShannonEnt(dataSet)
bestInfoGain = 0.0; bestFeature = -1
for i in range(numFeatures):        #iterate over all the features
featList = [example[i] for example in dataSet]#create a list of all the examples of this feature
uniqueVals = set(featList)       #get a set of unique values
newEntropy = 0.0
for value in uniqueVals:
subDataSet = splitDataSet(dataSet, i, value)
prob = len(subDataSet)/float(len(dataSet))
newEntropy += prob * calcShannonEnt(subDataSet)
infoGain = baseEntropy - newEntropy     #calculate the info gain; ie reduction in entropy
if (infoGain > bestInfoGain):       #compare this to the best gain so far
bestInfoGain = infoGain         #if better than current best, set to best
bestFeature = i
return bestFeature                      #returns an integer


trees.calcShannonEnt


信息熵: Ent(D)=−∑k=1|y|pklog2pk

|y|: 数据集D中,样本种类的个数。

#input: current dataSet
#output: the information gain of current dataSet
#algorithm: Ent(D)
def calcShannonEnt(dataSet):
numEntries = len(dataSet)
labelCounts = {}
for featVec in dataSet: #the the number of unique elements and their occurance
currentLabel = featVec[-1]
if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
shannonEnt = 0.0
for key in labelCounts:
prob = float(labelCounts[key])/numEntries
shannonEnt -= prob * log(prob,2) #log base 2
return shannonEnt


trees.splitDataSet


假定离散属性 a 有 V 个可能的取值 a1,a2,...,aV,若使用a来对样本集D进行划分则会产生 V 个分支结点,其中第 v 个分支结点包含了 D 中所有在属性 a 上取值为 aV 的样本,记为 Dv。

'''
input: dataSet: the dataset we'll split;
axis: the feature we'll split on;
value: the value of the feature.
output: dataset splitting on a given feature.
'''
def splitDataSet(dataSet, axis, value):
retDataSet = []
for featVec in dataSet:
if featVec[axis] == value:
reducedFeatVec = featVec[:axis]     #chop out axis used for splitting
reducedFeatVec.extend(featVec[axis+1:])
retDataSet.append(reducedFeatVec)
return retDataSet


决策树可视化

使用Matplotlib注解绘制决策树



Decision Tree

存在的问题及解决方式

过拟合


上面提到决策树算法中可能出现“过拟合”问题,决策树算法中解决过拟合问题通常使用剪枝的方法。决策树剪枝策略有“预剪枝”和“后剪枝”。

预剪枝


预剪枝是指在决策树生成过程中,对每个结点在划分前先进行估计,若当前结点的划分不能带来决策树泛化性能提升,则停止划分并将当前结点标记为叶结点。

后剪枝


后剪枝则是从训练集生成一颗完整的决策树,然后自底向上地对非叶结点进行考察,若将该结点对应的子树替换为叶结点能带来决策树泛化性能提升,则将该子树替换为叶结点。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息