您的位置:首页 > 产品设计 > UI/UE

STL源码剖析-序列式容器之heap和priority_queue

2017-04-20 11:36 513 查看
一.heap

1.heap概述

heap并不归属于STL容器组件,扮演priority queue的助手,binary max heap适合作为priority queue的底层机制.

binary heap是一种complete binary tree,整棵树除了最底层的叶子节点外都是填满的,而最底层的叶子节点从左至右不得有空隙.



利用array来存储complete binary tree的所有节点,将array的#0元素保留,那么当complete binary tree的某个节点位于array的i处时,其左子节点必位于array的2i处,右子节点必位于array的2i+1处.父节点必位于i/2处.

heap分为max-heap和min-heap两种,前者每个节点的键值都大于或等于其子节点的值,后者每个节点的键值都小于或等于其子节点的值.max-heap中最大值在根节点,min-heap最小值在根节点.底层存储结构为vector或者array.

2.push_heap算法



3.pop_heap算法



4.sort_heap算法



5.make_heap算法

将一段现有的数据转化为一个heap.

6.heap源码

//在STL中,heap不作为容器,只是提供了关于Heap操作的算法。
//heap没有自己的迭代器,只要支持RandomAccessIterator的容器都可以作为Heap容器
#ifndef __SGI_STL_INTERNAL_HEAP_H
#define __SGI_STL_INTERNAL_HEAP_H

__STL_BEGIN_NAMESPACE

#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma set woff 1209
#endif

// Heap-manipulation functions: push_heap, pop_heap, make_heap, sort_heap.

//堆中添加元素;关于push_heap操作的原型有两个
//注意: push_heap()操作之前必须保证新添加的元素已经加入到容器末尾
//***************************************************************
//*     第一个版本使用operator<操作
//*     template< class RandomIt >
//*     void push_heap( RandomIt first, RandomIt last );
//***************************************************************
//*     第二个版本使用比较函数comp
//*     template< class RandomIt, class Compare >
//*     void push_heap( RandomIt first, RandomIt last,Compare comp );
//***************************************************************
//* 比较函数comp:comparison function which returns true if the first argument is less than the second.
//* The signature of the comparison function should be equivalent to the following:
//*     bool cmp(const Type1 &a, const Type2 &b);
//***************************************************************
template <class _RandomAccessIterator, class _Distance, class _Tp>
void
__push_heap(_RandomAccessIterator __first,
_Distance __holeIndex, _Distance __topIndex, _Tp __value)
{//当前节点标号为__holeIndex- 1即为新插入元素标号,因为根节点标号是从0开始,所以这里要-1
_Distance __parent = (__holeIndex - 1) / 2;//找出当前节点的父节点
//尚未达到根节点,且所插入数据value大于父节点的关键字值
while (__holeIndex > __topIndex && *(__first + __parent) < __value) {
*(__first + __holeIndex) = *(__first + __parent);//交换当前节点元素与其父节点元素的值
__holeIndex = __parent;//更新当前节点标号,上溯
__parent = (__holeIndex - 1) / 2;//更新父节点
}   //持续达到根节点,或满足heap的性质
*(__first + __holeIndex) = __value;//插入正确的位置
}

template <class _RandomAccessIterator, class _Distance, class _Tp>
inline void
__push_heap_aux(_RandomAccessIterator __first,
_RandomAccessIterator __last, _Distance*, _Tp*)
{
//__last - __first) - 1表示插入后元素的个数,也是容器的最后一个下标数字
//新插入的元素必须位于容器的末尾
__push_heap(__first, _Distance((__last - __first) - 1), _Distance(0),
_Tp(*(__last - 1)));
}

//第一个版本push_heap默认是operator<操作
template <class _RandomAccessIterator>
inline void
push_heap(_RandomAccessIterator __first, _RandomAccessIterator __last)
{
__STL_REQUIRES(_RandomAccessIterator, _Mutable_RandomAccessIterator);
__STL_REQUIRES(typename iterator_traits<_RandomAccessIterator>::value_type,
_LessThanComparable);
__push_heap_aux(__first, __last,
__DISTANCE_TYPE(__first), __VALUE_TYPE(__first));
}

template <class _RandomAccessIterator, class _Distance, class _Tp,
class _Compare>
void
__push_heap(_RandomAccessIterator __first, _Distance __holeIndex,
_Distance __topIndex, _Tp __value, _Compare __comp)
{
_Distance __parent = (__holeIndex - 1) / 2;
while (__holeIndex > __topIndex && __comp(*(__first + __parent), __value)) {
*(__first + __holeIndex) = *(__first + __parent);
__holeIndex = __parent;
__parent = (__holeIndex - 1) / 2;
}
*(__first + __holeIndex) = __value;
}

template <class _RandomAccessIterator, class _Compare,
class _Distance, class _Tp>
inline void
__push_heap_aux(_RandomAccessIterator __first,
_RandomAccessIterator __last, _Compare __comp,
_Distance*, _Tp*)
{
__push_heap(__first, _Distance((__last - __first) - 1), _Distance(0),
_Tp(*(__last - 1)), __comp);
}
//第二个版本push_heap自定义比较操作函数comp
template <class _RandomAccessIterator, class _Compare>
inline void
push_heap(_RandomAccessIterator __first, _RandomAccessIterator __last,
_Compare __comp)
{
__STL_REQUIRES(_RandomAccessIterator, _Mutable_RandomAccessIterator);
__push_heap_aux(__first, __last, __comp,
__DISTANCE_TYPE(__first), __VALUE_TYPE(__first));
}

//注意: pop_heap()操作, 执行完操作后要自己将容器尾元素弹出
//default (1):
//          template <class RandomAccessIterator>
//          void pop_heap (RandomAccessIterator first, RandomAccessIterator last);
//custom (2):
//          template <class RandomAccessIterator, class Compare>
//          void pop_heap (RandomAccessIterator first, RandomAccessIterator last,
//                 Compare comp);
//***********************************************************************
template <class _RandomAccessIterator, class _Distance, class _Tp>
void
__adjust_heap(_RandomAccessIterator __first, _Distance __holeIndex,
_Distance __len, _Tp __value)
{
_Distance __topIndex = __holeIndex;//根节点标号
_Distance __secondChild = 2 * __holeIndex + 2;//获取子节点
while (__secondChild < __len) {//若子节点标号比总的标号数小
if (*(__first + __secondChild) < *(__first + (__secondChild - 1)))
__secondChild--;//找出堆中最大关键字值的节点
//若堆中存在比新根节点元素(即原始堆最后节点关键字值)大的节点,则交换位置
*(__first + __holeIndex) = *(__first + __secondChild);
__holeIndex = __secondChild;//更新父节点
__secondChild = 2 * (__secondChild + 1);//更新子节点
}
if (__secondChild == __len) {
*(__first + __holeIndex) = *(__first + (__secondChild - 1));
__holeIndex = __secondChild - 1;
}
__push_heap(__first, __holeIndex, __topIndex, __value);
}

template <class _RandomAccessIterator, class _Tp, class _Distance>
inline void
__pop_heap(_RandomAccessIterator __first, _RandomAccessIterator __last,
_RandomAccessIterator __result, _Tp __value, _Distance*)
{
*__result = *__first;//把原始堆的根节点元素放在容器的末尾
//调整剩下的节点元素,使其成为新的heap
__adjust_heap(__first, _Distance(0), _Distance(__last - __first), __value);
}

template <class _RandomAccessIterator, class _Tp>
inline void
__pop_heap_aux(_RandomAccessIterator __first, _RandomAccessIterator __last,
_Tp*)
{
__pop_heap(__first, __last - 1, __last - 1,
_Tp(*(__last - 1)), __DISTANCE_TYPE(__first));
}

template <class _RandomAccessIterator>
inline void pop_heap(_RandomAccessIterator __first,
_RandomAccessIterator __last)
{
__STL_REQUIRES(_RandomAccessIterator, _Mutable_RandomAccessIterator);
__STL_REQUIRES(typename iterator_traits<_RandomAccessIterator>::value_type,
_LessThanComparable);
__pop_heap_aux(__first, __last, __VALUE_TYPE(__first));
}

template <class _RandomAccessIterator, class _Distance,
class _Tp, class _Compare>
void
__adjust_heap(_RandomAccessIterator __first, _Distance __holeIndex,
_Distance __len, _Tp __value, _Compare __comp)
{
_Distance __topIndex = __holeIndex;
_Distance __secondChild = 2 * __holeIndex + 2;
while (__secondChild < __len) {
if (__c
deda
omp(*(__first + __secondChild), *(__first + (__secondChild - 1))))
__secondChild--;
*(__first + __holeIndex) = *(__first + __secondChild);
__holeIndex = __secondChild;
__secondChild = 2 * (__secondChild + 1);
}
if (__secondChild == __len) {
*(__first + __holeIndex) = *(__first + (__secondChild - 1));
__holeIndex = __secondChild - 1;
}
__push_heap(__first, __holeIndex, __topIndex, __value, __comp);
}

template <class _RandomAccessIterator, class _Tp, class _Compare,
class _Distance>
inline void
__pop_heap(_RandomAccessIterator __first, _RandomAccessIterator __last,
_RandomAccessIterator __result, _Tp __value, _Compare __comp,
_Distance*)
{
*__result = *__first;
__adjust_heap(__first, _Distance(0), _Distance(__last - __first),
__value, __comp);
}

template <class _RandomAccessIterator, class _Tp, class _Compare>
inline void
__pop_heap_aux(_RandomAccessIterator __first,
_RandomAccessIterator __last, _Tp*, _Compare __comp)
{
__pop_heap(__first, __last - 1, __last - 1, _Tp(*(__last - 1)), __comp,
__DISTANCE_TYPE(__first));
}

template <class _RandomAccessIterator, class _Compare>
inline void
pop_heap(_RandomAccessIterator __first,
_RandomAccessIterator __last, _Compare __comp)
{
__STL_REQUIRES(_RandomAccessIterator, _Mutable_RandomAccessIterator);
__pop_heap_aux(__first, __last, __VALUE_TYPE(__first), __comp);
}

//创建堆
//default(1):
//          template <class RandomAccessIterator>
//          void make_heap (RandomAccessIterator first, RandomAccessIterator last);
//custom (2):
//          template <class RandomAccessIterator, class Compare>
//          void make_heap (RandomAccessIterator first, RandomAccessIterator last,Compare comp );
//********************************************************************************
template <class _RandomAccessIterator, class _Tp, class _Distance>
void
__make_heap(_RandomAccessIterator __first,
_RandomAccessIterator __last, _Tp*, _Distance*)
{
if (__last - __first < 2) return;
_Distance __len = __last - __first;
_Distance __parent = (__len - 2)/2;

while (true) {
__adjust_heap(__first, __parent, __len, _Tp(*(__first + __parent)));
if (__parent == 0) return;
__parent--;
}
}

template <class _RandomAccessIterator>
inline void
make_heap(_RandomAccessIterator __first, _RandomAccessIterator __last)
{
__STL_REQUIRES(_RandomAccessIterator, _Mutable_RandomAccessIterator);
__STL_REQUIRES(typename iterator_traits<_RandomAccessIterator>::value_type,
_LessThanComparable);
__make_heap(__first, __last,
__VALUE_TYPE(__first), __DISTANCE_TYPE(__first));
}

template <class _RandomAccessIterator, class _Compare,
class _Tp, class _Distance>
void
__make_heap(_RandomAccessIterator __first, _RandomAccessIterator __last,
_Compare __comp, _Tp*, _Distance*)
{
if (__last - __first < 2) return;
_Distance __len = __last - __first;
_Distance __parent = (__len - 2)/2;

while (true) {
__adjust_heap(__first, __parent, __len, _Tp(*(__first + __parent)),
__comp);
if (__parent == 0) return;
__parent--;
}
}

template <class _RandomAccessIterator, class _Compare>
inline void
make_heap(_RandomAccessIterator __first,
_RandomAccessIterator __last, _Compare __comp)
{
__STL_REQUIRES(_RandomAccessIterator, _Mutable_RandomAccessIterator);
__make_heap(__first, __last, __comp,
__VALUE_TYPE(__first), __DISTANCE_TYPE(__first));
}

//排序堆里面的内容
//default(1):
//          template <class RandomAccessIterator>
//          void sort_heap (RandomAccessIterator first, RandomAccessIterator last);
//custom (2):
//          template <class RandomAccessIterator, class Compare>
//          void sort_heap (RandomAccessIterator first, RandomAccessIterator last,
//                        Compare comp);
//**************************************************************************
template <class _RandomAccessIterator>
void sort_heap(_RandomAccessIterator __first, _RandomAccessIterator __last)
{
__STL_REQUIRES(_RandomAccessIterator, _Mutable_RandomAccessIterator);
__STL_REQUIRES(typename iterator_traits<_RandomAccessIterator>::value_type,
_LessThanComparable);
while (__last - __first > 1)
pop_heap(__first, __last--);//每次取出根节点元素,直到heap为空
}

template <class _RandomAccessIterator, class _Compare>
void
sort_heap(_RandomAccessIterator __first,
_RandomAccessIterator __last, _Compare __comp)
{
__STL_REQUIRES(_RandomAccessIterator, _Mutable_RandomAccessIterator);
while (__last - __first > 1)
pop_heap(__first, __last--, __comp);
}

#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma reset woff 1209
#endif

__STL_END_NAMESPACE

#endif /* __SGI_STL_INTERNAL_HEAP_H */

// Local Variables:
// mode:C++
// End:


7.heap测试实例

#include<vector>
#include<iostream>
#include<algorithm> //heap algorithm
using namespace std;

int main(void){
{   //test heap(底层以vector完成)
int ia[9] = { 0, 1, 2, 3, 4, 8, 9, 3, 5 };
vector<int> ivec(ia, ia + 9);

make_heap(ivec.begin(), ivec.end());
for (int i = 0; i < ivec.size(); ++i)
cout << ivec[i] << ' ';
cout << endl;

ivec.push_back(7);
push_heap(ivec.begin(), ivec.end());
for (int i = 0; i < ivec.size(); ++i)
cout << ivec[i] << ' ';
cout << endl;

pop_heap(ivec.begin(), ivec.end());
cout << ivec.back() << endl;
ivec.pop_back();

for (int i = 0; i < ivec.size(); ++i)
cout << ivec[i] << ' ';
cout << endl;

sort_heap(ivec.begin(), ivec.end());
for (int i = 0; i < ivec.size(); ++i)
cout << ivec[i] << ' ';
cout << endl;
}
{   //test heap (底层以array 完成)
int ia[9] = { 0, 1, 2, 3, 4, 8, 9, 3, 5 };
make_heap(ia, ia + 9);

sort_heap(ia, ia + 9);
for (int i = 0; i < 9; ++i)
{
cout << ia[i] << ' ';
}
cout << endl;
}
{   //test heap (底层以array完成)
int ia[6] = { 4, 1, 7, 6, 2, 5 };
make_heap(ia, ia + 6);
for (int i = 0; i < 6; ++i)
cout << ia[i] << ' ';
cout << endl;
}
system("pause");
return 0;
}


二.priority_queue

1.priority_queue概述

priority_queue是一个拥有权值观念的queue,它允许加入新元素,移除旧元素,审视元素值等功能.只允许在低端加入元素,并从顶端取出元素,除此之外别无其他存取元素的途径.

priority_queue缺省情况下是以vector为底层容器,再加上heap处理规则,STL priority_queue往往不被归类为Container(容器),而被归类为container adapter.

2.测试实例

#include<queue>
#include<iostream>
#include<algorithm>
using namespace std;

int main(void){
//test priority queue...
int ia[9] = { 0, 1, 2, 3, 4, 8, 9, 3, 5 };
priority_queue<int> ipq(ia, ia + 9);
cout << "size= " << ipq.size() << endl;

for (int i = 0; i < ipq.size(); ++i)
cout << ipq.top() << ' ';
cout << endl;

while (!ipq.empty()){
cout << ipq.top() << ' ';
ipq.pop();
}
cout << endl;

system("pause");
return 0;
}
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: