您的位置:首页 > 其它

机器学习基础(一)机器学习中的Bias(偏差),Error(误差),和Variance(方差)

2017-03-15 15:13 477 查看
   本文根据周志华老师《机器学习》及其他相关平台资料整理及扩展得到。

   
   在训练数据上面,我们可以进行交叉验证(Cross-Validation)。一种方法叫做K-fold CrossValidation (K折交叉验证), K折交叉验证,初始采样分割成K个子样本,一个单独的子样本被保留作为验证模型的数据,其他K-1个样本用来训练。交叉验证重复K次,每个子样本验证一次,平均K次的结果或者使用其它结合方式,最终得到一个单一估测。
l  当K值大的时候,我们会有更少的Bias(偏差), 更多的Variance。
l  当K值小的时候,我们会有更多的Bias(偏差), 更少的Variance。
                                                        


    l 准:bias描述的是根据样本拟合出的模型的输出预测结果的期望与样本真实结果的差距,简单讲,就是在样本上拟合的好不好。要想在bias上表现好,low bias,就是复杂化模型,增加模型的参数,但这样容易过拟合 (overfitting),过拟合对应上图是high varience,点很分散。low bias对应就是点都打在靶心附近,所以瞄的是准的,但手不一定稳。

    l 确:varience描述的是样本上训练出来的模型在测试集上的表现,要想在varience上表现好,low varience,就要简化模型,减少模型的参数,但这样容易欠拟合(unfitting),欠拟合对应上图是high bias,点偏离中心。low varience对应就是点都打的很集中,但不一定是靶心附近,手很稳,但是瞄的不准。

                                          Error= Bias + Variance

    Error反映的是整个模型的准确度,Bias反映的是模型在样本上的输出与真实值之间的误差,即模型本身的精准度,Variance反映的是模型每一次输出结果与模型输出期望之间的误差,即模型的稳定性。

    举一个例子,一次打靶实验,目标是为了打到10环,但是实际上只打到了7环,那么这里面的Error就是3。具体分析打到7环的原因,可能有两方面:一是瞄准出了问题,比如实际上射击瞄准的是9环而不是10环;二是枪本身的稳定性有问题,虽然瞄准的是9环,但是只打到了7环。那么在上面一次射击实验中,Bias就是1,反应的是模型期望与真实目标的差距,而在这次试验中,由于Variance所带来的误差就是2,即虽然瞄准的是9环,但由于本身模型缺乏稳定性,造成了实际结果与模型期望之间的差距。

在一个实际系统中,Bias与Variance往往是不能兼得的。如果要降低模型的Bias,就一定程度上会提高模型的Variance,反之亦然。造成这种现象的根本原因是,我们总是希望试图用有限训练样本去估计无限的真实数据。当我们更加相信这些数据的真实性,而忽视对模型的先验知识,就会尽量保证模型在训练样本上的准确度,这样可以减少模型的Bias。但是,这样学习到的模型,很可能会失去一定的泛化能力,从而造成过拟合,降低模型在真实数据上的表现,增加模型的不确定性。相反,如果更加相信我们对于模型的先验知识,在学习模型的过程中对模型增加更多的限制,就可以降低模型的variance,提高模型的稳定性,但也会使模型的Bias增大。Bias与Variance两者之间的trade-off是机器学习的基本主题之一,机会可以在各种机器模型中发现它的影子。

    具体到K-fold CrossValidation的场景,其实是很好的理解的。首先看Variance的变化,还是举打靶的例子。假设我把抢瞄准在10环,虽然每一次射击都有偏差,但是这个偏差的方向是随机的,也就是有可能向上,也有可能向下。那么试验次数越多,应该上下的次数越接近,那么我们把所有射击的目标取一个平均值,也应该离中心更加接近。更加微观的分析,模型的预测值与期望产生较大偏差,在模型固定的情况下,原因还是出在数据上,比如说产生了某一些异常点。在最极端情况下,我们假设只有一个点是异常的,如果只训练一个模型,那么这个点会对整个模型带来影响,使得学习出的模型具有很大的variance。但是如果采用k-fold
Cross Validation进行训练,只有1个模型会受到这个异常数据的影响,而其余k-1个模型都是正常的。在平均之后,这个异常数据的影响就大大减少了。相比之下,模型的bias是可以直接建模的,只需要保证模型在训练样本上训练误差最小就可以保证bias比较小,而要达到这个目的,就必须是用所有数据一起训练,才能达到模型的最优解。因此,k-fold Cross Validation的目标函数破坏了前面的情形,所以模型的Bias必然要会增大。

    首先明确一点,Bias和Variance是针对Generalization(一般化,泛化)来说的。在机器学习中,我们用训练数据集去训练(学习)一个model(模型),通常的做法是定义一个Loss function(误差函数),通过将这个Loss(或者叫error)的最小化过程,来提高模型的性能(performance)。然而我们学习一个模型的目的是为了解决实际的问题(或者说是训练数据集这个领域(field)中的一般化问题),单纯地将训练数据集的loss最小化,并不能保证在解决更一般的问题时模型仍然是最优,甚至不能保证模型是可用的。这个训练数据集的loss与一般化的数据集的loss之间的差异就叫做generalization
error。

而generalization error又可以细分为Bias和Variance两个部分。

    首先如果我们能够获得所有可能的数据集合,并在这个数据集合上将loss最小化,这样学习到的模型就可以称之为“真实模型”,当然,我们是无论如何都不能获得并训练所有可能的数据的,所以“真实模型”肯定存在,但无法获得,我们的最终目标就是去学习一个模型使其更加接近这个真实模型。

    而bias和variance分别从两个方面来描述了我们学习到的模型与真实模型之间的差距。Bias是“用所有可能的训练数据集训练出的所有模型的输出的平均值” 与 “真实模型”的输出值之间的差异;Variance则是“不同的训练数据集训练出的模型”的输出值之间的差异。这里需要注意的是我们能够用来学习的训练数据集只是全部数据中的一个子集。想象一下我们现在收集几组不同的数据,因为每一组数据的不同,我们学习到模型的最小loss值也会有所不同,当然,它们与“真实模型”的最小loss也是不一样的。
泛化误差可分解为偏差、方差与噪声之和
    偏差度量了学习算法的期望预测与真实结果的偏离程度,即刻画了学习算法本身的拟合能力;方差度量了同样大小的训练集的变动所导致的学习性能的变化,即刻画了数据扰动所造成的影响;;噪声则表达了在当前任务上任何学习算法所能达到的期望泛化误差的下界,即刻画了学习问题本身的难度。

    偏差-方差分解说明,泛化性能是由学习算法的能力、数据的充分性以及学习任务本身的难度所共同决定的。给定学习任务,为了取得好的泛化性能,则需使偏差较小,既能够充分拟合数据,并且使方差较小,即使得数据扰动产生的影响小。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签:  机器学习 知识点
相关文章推荐