您的位置:首页 > 运维架构 > Linux

task_struct--Linux结构体字段介绍

2017-02-18 14:16 429 查看
Linux内核通过一个被称为进程描述符的task_struct结构体来管理进程,


task_struct是Linux中的【进程控制块PCB结构】的具体数据结构

这个结构体包含了一个进程所需的所有信息。它定义在linux-2.6.38.8/include/linux/sched.h文件中。

下面对task_struct这个结构体
进行各个字段的详细介绍

1. 调度数据成员

(1) volatile long states;

表示进程的当前状态:

? TASK_RUNNING:正在运行或在就绪队列run-queue中准备运行的进程,实际参与进程调度。

? TASK_INTERRUPTIBLE:处于等待队列中的进程,待资源有效时唤醒,也可由其它进程通过信号(signal)或定时中断唤醒后进入就绪队列run-queue。

? TASK_UNINTERRUPTIBLE:处于等待队列中的进程,待资源有效时唤醒,不可由其它进程通过信号(signal)或定时中断唤醒。

? TASK_ZOMBIE:表示进程结束但尚未消亡的一种状态(僵死状态)。此时,进程已经结束运行且释放大部分资源,但尚未释放进程控制块。

?TASK_STOPPED:进程被暂停,通过其它进程的信号才能唤醒。导致这种状态的原因有二,或者是对收到SIGSTOP、SIGSTP、SIGTTIN或SIGTTOU信号的反应,或者是受其它进程的ptrace系统调用的控制而暂时将CPU交给控制进程。

? TASK_SWAPPING: 进程页面被交换出内存的进程。

(2) unsigned long flags;

进程标志:

?PF_ALIGNWARN        打印“对齐”警告信息。

?PF_PTRACED           被ptrace系统调用监控。

?PF_TRACESYS          正在跟踪。

?PF_FORKNOEXEC       进程刚创建,但还没执行。

?PF_SUPERPRIV         超级用户特权。

?PF_DUMPCORE         dumped core。

?PF_SIGNALED          进程被信号(signal)杀出。

?PF_STARTING          进程正被创建。

?PF_EXITING            进程开始关闭。

?PF_USEDFPU           该进程使用FPU(SMP only)。

?PF_DTRACE            delayed trace (used on m68k)。

(3) long priority;

进程优先级。 Priority的值给出进程每次获取CPU后可使用的时间(按jiffies计)。优先级可通过系统调用sys_setpriorty改变(在kernel/sys.c中)。

(4) unsigned long rt_priority;

rt_priority给出实时进程的优先级,rt_priority+1000给出进程每次获取CPU后可使用的时间(同样按jiffies计)。实时进程的优先级可通过系统调用sys_sched_setscheduler()改变(见kernel/sched.c)。

(5) long counter;

在轮转法调度时表示进程当前还可运行多久。在进程开始运行是被赋为priority的值,以后每隔一个tick(时钟中断)递减1,减到0时引起新一轮调度。重新调度将从run_queue队列选出counter值最大的就绪进程并给予CPU使用权,因此counter起到了进程的动态优先级的作用(priority则是静态优先级)。

(6) unsigned long policy;

该进程的进程调度策略,可以通过系统调用sys_sched_setscheduler()更改(见kernel/sched.c)。调度策略有:

?SCHED_OTHER   0   非实时进程,基于优先权的轮转法(round robin)。

?SCHED_FIFO     1   实时进程,用先进先出算法

?SCHED_RR       2   实时进程,用基于优先权的轮转法。
2. 信号处理

(1) unsigned long signal;

进程接收到的信号。每位表示一种信号,共32种。置位有效。

(2)  unsigned long blocked;

进程所能接受信号的位掩码。置位表示屏蔽,复位表示不屏蔽。

(3) struct signal_struct *sig;

因为signal和blocked都是32位的变量,Linux最多只能接受32种信号。对每种信号,各进程可以由PCB的sig属性选择使用自定义的处理函数,或是系统的缺省处理函数。指派各种信息处理函数的结构定义在include/linux/sched.h中。对信号的检查安排在系统调用结束后,以及“慢速型”中断服务程序结束后(IRQ#_interrupt(),参见Array。5节“启动内核”)。
3. 进程队列指针

(1) struct task_struct *next_task,*prev_task;

所有进程(以PCB的形式)组成一个双向链表。next_task和就是链表的前后指针。链表的头和尾都是init_task(即0号进程)。

(2) struct task_struct *next_run,*prev_run;

由正在运行或是可以运行的,其进程状态均为TASK_RUNNING的进程所组成的一个双向循环链表,即run_queue就绪队列。该链表的前后向指针用next_run和prev_run,链表的头和尾都是init_task(即0号进程)。

(3) struct task_struct *p_opptr,*p_pptr;和struct
task_struct *p_cptr,*p_ysptr,*p_osptr;

        以上分别是指向原始父进程(original parent)、父进程(parent)、子进程(youngest
child)及新老兄弟进程(younger sibling,older
sibling)的指针。

     
4. 进程标识

(1) unsigned short uid,gid;

uid和gid是运行进程的用户标识和用户组标识。

(2) int groups[NGROUPS];

与多数现代UNIX操作系统一样,Linux允许进程同时拥有一组用户组号。在进程访问文件时,这些组号可用于合法性检查。

(3) unsigned short euid,egid;

euid和egid又称为有效的uid和gid。出于系统安全的权限的考虑,运行程序时要检查euid和egid的合法性。通常,uid等于euid,gid等于egid。有时候,系统会赋予一般用户暂时拥有root的uid和gid(作为用户进程的euid和egid),以便于进行运作。

(4) unsigned short fsuid,fsgid;

fsuid和fsgid称为文件系统的uid和gid,用于文件系统操作时的合法性检查,是Linux独特的标识类型。它们一般分别和euid和egid一致,但在NFS文件系统中NFS服务器需要作为一个特殊的进程访问文件,这时只修改客户进程的fsuid和fsgid。

(5) unsigned short suid,sgid;

suid和sgid是根据POSIX标准引入的,在系统调用改变uid和gid时,用于保留真正的uid和gid。

(6) int pid,pgrp,session;

进程标识号、进程的组织号及session标识号,相关系统调用(见程序kernel/sys.c)有sys_setpgid、sys_getpgid、sys_setpgrp、sys_getpgrp、sys_getsid及sys_setsid几种。

(7) int leader;

是否是session的主管,布尔量。
5. 时间数据成员

(1) unsigned long timeout;

用于软件定时,指出进程间隔多久被重新唤醒。采用tick为单位。

(2) unsigned long it_real_value,it_real_iner;

用于itimer(interval timer)软件定时。采用jiffies为单位,每个tick使it_real_value减到0时向进程发信号SIGALRM,并重新置初值。初值由it_real_incr保存。具体代码见kernel/itimer.c中的函数it_real_fn()。

(3) struct timer_list real_timer;

一种定时器结构(Linux共有两种定时器结构,另一种称作old_timer)。数据结构的定义在include/linux/timer.h中,相关操作函数见kernel/sched.c中add_timer()和del_timer()等。

(4) unsigned long it_virt_value,it_virt_incr;

关于进程用户态执行时间的itimer软件定时。采用jiffies为单位。进程在用户态运行时,每个tick使it_virt_value减1,减到0时向进程发信号SIGVTALRM,并重新置初值。初值由it_virt_incr保存。具体代码见kernel/sched.c中的函数do_it_virt()。

(5) unsigned long it_prof_value,it_prof_incr;

同样是itimer软件定时。采用jiffies为单位。不管进程在用户态或内核态运行,每个tick使it_prof_value减1,减到0时向进程发信号SIGPROF,并重新置初值。初值由it_prof_incr保存。
具体代码见kernel/sched.c中的函数do_it_prof。

(6) long utime,stime,cutime,cstime,start_time;

以上分别为进程在用户态的运行时间、进程在内核态的运行时间、所有层次子进程在用户态的运行时间总和、所有层次子进程在核心态的运行时间总和,以及创建该进程的时间。
6. 信号量数据成员

(1) struct sem_undo *semundo;

进程每操作一次信号量,都生成一个对此次操作的undo操作,它由sem_undo结构描述。这些属于同一进程的undo操作组成的链表就由semundo属性指示。当进程异常终止时,系统会调用undo操作。sem_undo的成员semadj指向一个数据数组,表示各次undo的量。结构定义在include/linux/sem.h。

(2) struct sem_queue *semsleeping;

每一信号量集合对应一个sem_queue等待队列(见include/linux/sem.h)。进程因操作该信号量集合而阻塞时,它被挂到semsleeping指示的关于该信号量集合的sem_queue队列。反过来,semsleeping。sleeper指向该进程的PCB。
7. 进程上下文环境

(1) struct desc_struct *ldt;

进程关于CPU段式存储管理的局部描述符表的指针,用于仿真WINE Windows的程序。其他情况下取值NULL,进程的ldt就是arch/i386/traps.c定义的default_ldt。

(2) struct thread_struct tss;

任务状态段,其内容与INTEL CPU的TSS对应,如各种通用寄存器.CPU调度时,当前运行进程的TSS保存到PCB的tss,新选中进程的tss内容复制到CPU的TSS。结构定义在include/linux/tasks.h中。

(3) unsigned long saved_kernel_stack;

为MS-DOS的仿真程序(或叫系统调用vm86)保存的堆栈指针。

(4) unsigned long kernel_stack_page;

在内核态运行时,每个进程都有一个内核堆栈,其基地址就保存在kernel_stack_page中。
8. 文件系统数据成员

(1) struct fs_struct *fs;

fs保存了进程本身与VFS的关系消息,其中root指向根目录结点,pwd指向当前目录结点,umask给出新建文件的访问模式(可由系统调用umask更改),count是Linux保留的属性,如下页图所示。结构定义在include/linux/sched.h中。

(2) struct files_struct *files;

files包含了进程当前所打开的文件(struct file *fd[NR_OPEN])。在Linux中,一个进程最多只能同时打开NR_OPEN个文件。而且,前三项分别预先设置为标准输入、标准输出和出错消息输出文件。 

(3) int link_count;

文件链(link)的数目。
Array. 内存数据成员

(1) struct mm_struct *mm;

在linux中,采用按需分页的策略解决进程的内存需求。task_struct的数据成员mm指向关于存储管理的mm_struct结构。其中包含了一个虚存队列mmap,指向由若干vm_area_struct描述的虚存块。同时,为了加快访问速度,mm中的mmap_avl维护了一个AVL树。在树中,所有的vm_area_struct虚存块均由左指针指向相邻的低虚存块,右指针指向相邻的高虚存块。
结构定义在include/linux/sched.h中。
10. 页面管理

(1) int swappable:1;

进程占用的内存页面是否可换出。swappable为1表示可换出。对该标志的复位和置位均在do_fork()函数中执行(见kerenl/fork.c)。

(2) unsigned long swap_address;

虚存地址比swap_address低的进程页面,以前已经换出或已换出过,进程下一次可换出的页面自swap_address开始。参见swap_out_process()和swap_out_pmd()(见mm/vmscan.c)。

(3)    unsigned long min_flt,maj_flt;

该进程累计的minor缺页次数和major缺页次数。maj_flt基本与min_flt相同,但计数的范围比后者广(参见fs/buffer.c和mm/page_alloc.c)。min_flt只在do_no_page()、do_wp_page()里(见mm/memory.c)计数新增的可以写操作的页面。

(4) unsigned long nswap;

该进程累计换出的页面数。

(5) unsigned long cmin_flt,cmaj_flt,cnswap;

以本进程作为祖先的所有层次子进程的累计换入页面、换出页面计数。

(6) unsigned long old_maj_flt,dec_flt;

(7) unsigned long swap_cnt;

下一次信号最多可换出的页数。
11. 支持对称多处理器方式(SMP)时的数据成员

(1) int processor;

进程正在使用的CPU。

(2) int last_processor;

进程最后一次使用的CPU。

(3) int lock_depth;

上下文切换时系统内核锁的深度。
12. 其它数据成员

(1) unsigned short used_math;

是否使用FPU。

(2) char comm[16];

进程正在运行的可执行文件的文件名。

(3) struct rlimit rlim[RLIM_NLIMITS];

结构rlimit用于资源管理,定义在linux/include/linux/resource.h中,成员共有两项:rlim_cur是资源的当前最大数目;rlim_max是资源可有的最大数目。在i386环境中,受控资源共有RLIM_NLIMITS项,即10项,定义在linux/include/asm/resource.h中,见下表:

(4) int errno;

最后一次出错的系统调用的错误号,0表示无错误。系统调用返回时,全程量也拥有该错误号。

(5) long debugreg[8];

保存INTEL CPU调试寄存器的值,在ptrace系统调用中使用。

(6) struct exec_domain *exec_domain;

Linux可以运行由80386平台其它UNIX操作系统生成的符合iBCS2标准的程序。关于此类程序与Linux程序差异的消息就由exec_domain结构保存。

(7) unsigned long personality;

Linux可以运行由80386平台其它UNIX操作系统生成的符合iBCS2标准的程序。 Personality进一步描述进程执行的程序属于何种UNIX平台的“个性”信息。通常有PER_Linux、PER_Linux_32BIT、PER_Linux_EM86、PER_SVR3、PER_SCOSVR3、PER_WYSEV386、PER_ISCR4、PER_BSD、PER_XENIX和PER_MASK等,参见include/linux/personality.h。

(8) struct linux_binfmt *binfmt;

指向进程所属的全局执行文件格式结构,共有a。out、script、elf和Java等四种。结构定义在include/linux/binfmts.h中(core_dump、load_shlib(fd)、load_binary、use_count)。

(Array) int exit_code,exit_signal;

引起进程退出的返回代码exit_code,引起错误的信号名exit_signal。

(10) int dumpable:1;

布尔量,表示出错时是否可以进行memory dump。

(11) int did_exec:1;

按POSIX要求设计的布尔量,区分进程是正在执行老程序代码,还是在执行execve装入的新代码。

(12) int tty_old_pgrp;

进程显示终端所在的组标识。

(13) struct tty_struct *tty;

指向进程所在的显示终端的信息。如果进程不需要显示终端,如0号进程,则该指针为空。结构定义在include/linux/tty.h中。

(14) struct wait_queue *wait_chldexit;

在进程结束时,或发出系统调用wait4后,为了等待子进程的结束,而将自己(父进程)睡眠在该队列上。结构定义在include/linux/wait.h中。
13. 进程队列的全局变量

(1) current;

当前正在运行的进程的指针,在SMP中则指向CPU组中正被调度的CPU的当前进程:

           #define current(0+current_set[smp_processor_id()])/*sched.h*/

           struct task_struct *current_set[NR_CPUS];

(2) struct task_struct init_task;

即0号进程的PCB,是进程的“根”,始终保持初值INIT_TASK。

(3) struct task_struct *task[NR_TASKS];

进程队列数组,规定系统可同时运行的最大进程数(见kernel/sched.c)。NR_TASKS定义在include/linux/tasks.h中,值为512。每个进程占一个数组元素(元素的下标不一定就是进程的pid),task[0]必须指向init_task(0号进程)。可以通过task[]数组遍历所有进程的PCB。但Linux也提供一个宏定义for_each_task()(见include/linux/sched.h),它通过next_task遍历所有进程的PCB:

         #define for_each_task(p) \

              for(p=&init_task;(p=p->next_task)!=&init_task;)

(4) unsigned long volatile jiffies;

Linux的基准时间(见kernal/sched.c)。系统初始化时清0,以后每隔10ms由时钟中断服务程序do_timer()增1。

(5) int need_resched;

重新调度标志位(见kernal/sched.c)。当需要Linux调度时置位。在系统调用返回前(或者其它情形下),判断该标志是否置位。置位的话,马上调用schedule进行CPU调度。

(6) unsigned long intr_count;

记录中断服务程序的嵌套层数(见kernal/softirq.c)。正常运行时,intr_count为0。当处理硬件中断、执行任务队列中的任务或者执行bottom
half队列中的任务时,intr_count非0。这时,内核禁止某些操作,例如不允许重新调度。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息