您的位置:首页 > 大数据 > 人工智能

Callback Promise Generator Async-Await 和异常处理的演进_1

2017-02-05 09:28 791 查看
根据笔者的项目经验,本文讲解了从函数回调,到
es7
规范的异常处理方式。异常处理的优雅性随着规范的进步越来越高,不要害怕使用
try catch
,不能回避异常处理。

我们需要一个健全的架构捕获所有同步、异步的异常。业务方不处理异常时,中断函数执行并启用默认处理,业务方也可以随时捕获异常自己处理。

优雅的异常处理方式就像冒泡事件,任何元素可以自由拦截,也可以放任不管交给顶层处理。

文字讲解仅是背景知识介绍,不包含对代码块的完整解读,不要忽略代码块的阅读。

1. 回调

如果在回调函数中直接处理了异常,是最不明智的选择,因为业务方完全失去了对异常的控制能力。

下方的函数
请求处理
不但永远不会执行,还无法在异常时做额外的处理,也无法阻止异常产生时笨拙的
console.log('请求失败')
行为。

function fetch(callback) {
setTimeout(() => {
console.log('请求失败')
})
}

fetch(() => {
console.log('请求处理') // 永远不会执行
})


2. 回调,无法捕获的异常

回调函数有同步和异步之分,区别在于对方执行回调函数的时机,异常一般出现在请求、数据库连接等操作中,这些操作大多是异步的。

异步回调中,回调函数的执行栈与原函数分离开,导致外部无法抓住异常。

从下文开始,我们约定用
setTimeout
模拟异步操作

function fetch(callback) {
setTimeout(() => {
throw Error('请求失败')
})
}

try {
fetch(() => {
console.log('请求处理') // 永远不会执行
})
} catch (error) {
console.log('触发异常', error) // 永远不会执行
}

// 程序崩溃
// Uncaught Error: 请求失败


3. 回调,不可控的异常

我们变得谨慎,不敢再随意抛出异常,这已经违背了异常处理的基本原则。

虽然使用了
error-first
约定,使异常看起来变得可处理,但业务方依然没有对异常的控制权,是否调用错误处理取决于回调函数是否执行,我们无法知道调用的函数是否可靠。

更糟糕的问题是,业务方必须处理异常,否则程序挂掉就会什么都不做,这对大部分不用特殊处理异常的场景造成了很大的精神负担。

function fetch(handleError, callback) {
setTimeout(() => {
handleError('请求失败')
})
}

fetch(() => {
console.log('失败处理') // 失败处理
}, error => {
console.log('请求处理') // 永远不会执行
})


番外 Promise 基础

Promise
是一个承诺,只可能是成功、失败、无响应三种情况之一,一旦决策,无法修改结果。

Promise
不属于流程控制,但流程控制可以用多个
Promise
组合实现,因此它的职责很单一,就是对一个决议的承诺。

resolve
表明通过的决议,
reject
表明拒绝的决议,如果决议通过,
then
函数的第一个回调会立即插入
microtask
队列,异步立即执行

简单补充下事件循环的知识,js 事件循环分为 macrotask 和 microtask。

microtask 会被插入到每一个 macrotask 的尾部,所以 microtask 总会优先执行,哪怕 macrotask 因为 js 进程繁忙被 hung 住。

比如
setTimeout
setInterval
会插入到 macrotask 中。

const promiseA = new Promise((resolve, reject) => {
resolve('ok')
})
promiseA.then(result => {
console.log(result) // ok
})


如果决议结果是决绝,那么
then
函数的第二个回调会立即插入
microtask
队列。

const promiseB = new Promise((resolve, reject) => {
reject('no')
})
promiseB.then(result => {
console.log(result) // 永远不会执行
}, error => {
console.log(error) // no
})


如果一直不决议,此
promise
将处于
pending
状态。

const promiseC = new Promise((resolve, reject) => {
// nothing
})
promiseC.then(result => {
console.log(result) // 永远不会执行
}, error => {
console.log(error) // 永远不会执行
})


未捕获的
reject
会传到末尾,通过
catch
接住

const promiseD = new Promise((resolve, reject) => {
reject('no')
})
promiseD.then(result => {
console.log(result) // 永远不会执行
}).catch(error => {
console.log(error) // no
})


resolve
决议会被自动展开(
reject
不会)

const promiseE = new Promise((resolve, reject) => {
return new Promise((resolve, reject) => {
resolve('ok')
})
})
promiseE.then(result => {
console.log(result) // ok
})


链式流,
then
会返回一个新的
Promise
,其状态取决于
then
的返回值。

const promiseF = new Promise((resolve, reject) => {
resolve('ok')
})
promiseF.then(result => {
return Promise.reject('error1')
}).then(result => {
console.log(result) // 永远不会执行
return Promise.resolve('ok1') // 永远不会执行
}).then(result => {
console.log(result) // 永远不会执行
}).catch(error => {
console.log(error) // error1
})


4 Promise 异常处理

不仅是
reject
,抛出的异常也会被作为拒绝状态被
Promise
捕获。

function fetch(callback) {
return new Promise((resolve, reject) => {
throw Error('用户不存在')
})
}

fetch().then(result => {
console.log('请求处理', result) // 永远不会执行
}).catch(error => {
console.log('请求处理异常', error) // 请求处理异常 用户不存在
})


5 Promise 无法捕获的异常

但是,永远不要在
macrotask
队列中抛出异常,因为
macrotask
队列脱离了运行上下文环境,异常无法被当前作用域捕获。

function fetch(callback) {
return new Promise((resolve, reject) => {
setTimeout(() => {
throw Error('用户不存在')
})
})
}

fetch().then(result => {
console.log('请求处理', result) // 永远不会执行
}).catch(error => {
console.log('请求处理异常', error) // 永远不会执行
})

// 程序崩溃
// Uncaught Error: 用户不存在


不过
microtask
中抛出的异常可以被捕获,说明
microtask
队列并没有离开当前作用域,我们通过以下例子来证明:

Promise.resolve(true).then((resolve, reject)=> {
throw Error('microtask 中的异常')
}).catch(error => {
console.log('捕获异常', error) // 捕获异常 Error: microtask 中的异常
})


至此,
Promise
的异常处理有了比较清晰的答案,只要注意在
macrotask
级别回调中使用
reject
,就没有抓不住的异常。

6 Promise 异常追问

如果第三方函数在
macrotask
回调中以
throw Error
的方式抛出异常怎么办?

function thirdFunction() {
setTimeout(() => {
throw Error('就是任性')
})
}

Promise.resolve(true).then((resolve, reject) => {
thirdFunction()
}).catch(error => {
console.log('捕获异常', error)
})

// 程序崩溃
// Uncaught Error: 就是任性


值得欣慰的是,由于不在同一个调用栈,虽然这个异常无法被捕获,但也不会影响当前调用栈的执行。

我们必须正视这个问题,唯一的解决办法,是第三方函数不要做这种傻事,一定要在
macrotask
抛出异常的话,请改为
reject
的方式。

function thirdFunction() {return new Promise((resolve, reject) => {
setTimeout(() => {reject('收敛一些')
})
})
}

Promise.resolve(true).then((resolve, reject) => {return thirdFunction()
}).catch(error => {
console.log('捕获异常', error) // 捕获异常 收敛一些
})


请注意,如果
return thirdFunction()
这行缺少了
return
的话,依然无法抓住这个错误,这是因为没有将对方返回的
Promise
传递下去,错误也不会继续传递。

我们发现,这样还不是完美的办法,不但容易忘记
return
,而且当同时含有多个第三方函数时,处理方式不太优雅:

function thirdFunction() {return new Promise((resolve, reject) => {
setTimeout(() => {reject('收敛一些')
})
})
}

Promise.resolve(true).then((resolve, reject) => {return thirdFunction().then(() => {return thirdFunction()
}).then(() => {return thirdFunction()
}).then(() => {
})
}).catch(error => {
console.log('捕获异常', error)
})


是的,我们还有更好的处理方式。

番外 Generator 基础

generator
是更为优雅的流程控制方式,可以让函数可中断执行:

function* generatorA() {
console.log('a')
yield
console.log('b')
}
const genA = generatorA()
genA.next() // a
genA.next() // b


yield
关键字后面可以包含表达式,表达式会传给
next().value


next()
可以传递参数,参数作为
yield
的返回值。

这些特性足以孕育出伟大的生成器,我们稍后介绍。下面是这个特性的例子:

function* generatorB(count) {
console.log(count)
const result = yield 5
console.log(result * count)
}
const genB = generatorB(2)
genB.next() // 2
const genBValue = genB.next(7).value // 14
// genBValue undefined


第一个 next 是没有参数的,因为在执行
generator
函数时,初始值已经传入,第一个
next
的参数没有任何意义,传入也会被丢弃。

const result = yield 5


这一句,返回值不是想当然的
5
。其的作用是将
5
传递给
genB.next()
,其值,由下一个 next
genB.next(7)
传给了它,所以语句等于
const result = 7


最后一个
genBValue
,是最后一个
next
的返回值,这个值,就是函数的
return
,显然为
undefined


我们回到这个语句:

const result = yield 5


如果返回值是 5,是不是就清晰了许多?是的,这种语法就是
await
。所以
Async Await
generator
有着莫大的关联,桥梁就是 生成器,我们稍后介绍 生成器

番外 Async Await

如果认为
Generator
不太好理解,那
Async Await
绝对是救命稻草,我们看看它们的特征:

const timeOut = (time = 0) => new Promise((resolve, reject) => {
setTimeout(() => {
resolve(time + 200)
}, time)
})

async function main() {
const result1 = await timeOut(200)
console.log(result1) // 400
const result2 = await timeOut(result1)
console.log(result2) // 600
const result3 = await timeOut(result2)
console.log(result3) // 800
}

main()


所见即所得,
await
后面的表达式被执行,表达式的返回值被返回给了
await
执行处。

但是程序是怎么暂停的呢?只有
generator
可以暂停程序。那么等等,回顾一下
generator
的特性,我们发现它也可以达到这种效果。

番外 async await 是 generator 的语法糖

终于可以介绍 生成器 了!它可以魔法般将下面的
generator
执行成为
await
的效果。

function* main() {
const result1 = yield timeOut(200)
console.log(result1)
const result2 = yield timeOut(result1)
console.log(result2)
const result3 = yield timeOut(result2)
console.log(result3)
}


下面的代码就是生成器了,生成器并不神秘,它只有一个目的,就是:

所见即所得,
yield
后面的表达式被执行,表达式的返回值被返回给了
yield
执行处。

达到这个目标不难,达到了就完成了
await
的功能,就是这么神奇。

function step(generator) {
const gen = generator()
// 由于其传值,返回步骤交错的特性,记录上一次 yield 传过来的值,在下一个 next 返回过去
let lastValue
// 包裹为 Promise,并执行表达式
return () => Promise.resolve(gen.next(lastValue).value).then(value => {
lastValue = value
return lastValue
})
}


利用生成器,模拟出
await
的执行效果:

const run = step(main)

function recursive(promise) {
promise().then(result => {
if (result) {
recursive(promise)
}
})
}

recursive(run)
// 400
// 600
// 800


可以看出,
await
的执行次数由程序自动控制,而回退到
generator
模拟,需要根据条件判断是否已经将函数执行完毕。

7 Async Await 异常

不论是同步、异步的异常,
await
都不会自动捕获,但好处是可以自动中断函数,我们大可放心编写业务逻辑,而不用担心异步异常后会被执行引发雪崩:

function fetch(callback) {return new Promise((resolve, reject) => {
setTimeout(() => {reject()
})
})
}

async function main() {
const result = await fetch()
console.log('请求处理', result) // 永远不会执行
}

main()


8 Async Await 捕获异常

我们使用
try catch
捕获异常。

认真阅读
Generator
番外篇的话,就会理解为什么此时异步的异常可以通过
try catch
来捕获。

因为此时的异步其实在一个作用域中,通过
generator
控制执行顺序,所以可以将异步看做同步的代码去编写,包括使用
try catch
捕获异常。

function fetch(callback) {return new Promise((resolve, reject) => {
setTimeout(() => {reject('no')
})
})
}

async function main() {
try {
const result = await fetch()
console.log('请求处理', result) // 永远不会执行
} catch (error) {
console.log('异常', error) // 异常 no
}
}

main()


9 Async Await 无法捕获的异常

和第五章 Promise 无法捕获的异常 一样,这也是
await
的软肋,不过任然可以通过第六章的方案解决:

function thirdFunction() {return new Promise((resolve, reject) => {
setTimeout(() => {reject('收敛一些')
})
})
}

async function main() {
try {
const result = await thirdFunction()
console.log('请求处理', result) // 永远不会执行
} catch (error) {
console.log('异常', error) // 异常 收敛一些
}
}

main()


现在解答第六章尾部的问题,为什么
await
是更加优雅的方案:

async function main() {
try {
const result1 = await secondFunction() // 如果不抛出异常,后续继续执行
const result2 = await thirdFunction() // 抛出异常
const result3 = await thirdFunction() // 永远不会执行
console.log('请求处理', result) // 永远不会执行
} catch (error) {
console.log('异常', error) // 异常 收敛一些
}
}

main()


10 业务场景

在如今
action
概念成为标配的时代,我们大可以将所有异常处理收敛到
action
中。

我们以如下业务代码为例,默认不捕获错误的话,错误会一直冒泡到顶层,最后抛出异常。

const successRequest = () => Promise.resolve('a')
const failRequest = () => Promise.reject('b')

class Action {
async successReuqest() {
const result = await successRequest()
console.log('successReuqest', '处理返回值', result) // successReuqest 处理返回值 a
}

async failReuqest() {
const result = await failRequest()
console.log('failReuqest', '处理返回值', result) // 永远不会执行
}

async allReuqest() {
const result1 = await successRequest()
console.log('allReuqest', '处理返回值 success', result1) // allReuqest 处理返回值 success a
const result2 = await failRequest()
console.log('allReuqest', '处理返回值 success', result2) // 永远不会执行
}
}

const action = new Action()
action.successReuqest()
action.failReuqest()
action.allReuqest()

// 程序崩溃
// Uncaught (in promise) b
// Uncaught (in promise) b


为了防止程序崩溃,需要业务线在所有 async 函数中包裹
try catch


我们需要一种机制捕获
action
最顶层的错误进行统一处理。

为了补充前置知识,我们再次进入番外话题。

番外 Decorator

Decorator
中文名是装饰器,核心功能是可以通过外部包装的方式,直接修改类的内部属性。

装饰器按照装饰的位置,分为
class decorator
method decorator
以及
property decorator
(目前标准尚未支持,通过
get
set
模拟实现)。

Class Decorator

类级别装饰器,修饰整个类,可以读取、修改类中任何属性和方法。

const classDecorator = (target: any) => {
const keys = Object.getOwnPropertyNames(target.prototype)
console.log('classA keys,', keys) // classA keys ["constructor", "sayName"]
}

@classDecorator
class A {
sayName() {
console.log('classA ascoders')
}
}
const a = new A()
a.sayName() // classA ascoders


Method Decorator

方法级别装饰器,修饰某个方法,和类装饰器功能相同,但是能额外获取当前修饰的方法名。

为了发挥这一特点,我们篡改一下修饰的函数。

const methodDecorator = (target: any, propertyKey: string, descriptor: PropertyDescriptor) => {
return {
get() {
return () => {
console.log('classC method override')
}
}
}
}

class C {
@methodDecorator
sayName() {
console.log('classC ascoders')
}
}
const c = new C()
c.sayName() // classC method override


Property Decorator

属性级别装饰器,修饰某个属性,和类装饰器功能相同,但是能额外获取当前修饰的属性名。

为了发挥这一特点,我们篡改一下修饰的属性值。

const propertyDecorator = (target: any, propertyKey: string | symbol) => {
Object.defineProperty(target, propertyKey, {
get() {
return 'github'
},
set(value: any) {
return value
}
})
}

class B {
@propertyDecorator
private name = 'ascoders'

sayName() {
console.log(`classB ${this.name}`)
}
}
const b = new B()
b.sayName() // classB github


11 业务场景 统一异常捕获

我们来编写类级别装饰器,专门捕获
async
函数抛出的异常:

const asyncClass = (errorHandler?: (error?: Error) => void) => (target: any) => {
Object.getOwnPropertyNames(target.prototype).forEach(key => {
const func = target.prototype[key]
target.prototype[key] = async (...args: any[]) => {
try {
await func.apply(this, args)
} catch (error) {
errorHandler && errorHandler(error)
}
}
})
return target
}


将类所有方法都用
try catch
包裹住,将异常交给业务方统一的
errorHandler
处理:

const successRequest = () => Promise.resolve('a')
const failRequest = () => Promise.reject('b')

const iAsyncClass = asyncClass(error => {
console.log('统一异常处理', error) // 统一异常处理 b
})

@iAsyncClass
class Action {
async successReuqest() {
const result = await successRequest()
console.log('successReuqest', '处理返回值', result)
}

async failReuqest() {
const result = await failRequest()
console.log('failReuqest', '处理返回值', result) // 永远不会执行
}

async allReuqest() {
const result1 = await successRequest()
console.log('allReuqest', '处理返回值 success', result1)
const result2 = await failRequest()
console.log('allReuqest', '处理返回值 success', result2) // 永远不会执行
}
}

const action = new Action()
action.successReuqest()
action.failReuqest()
action.allReuqest()


我们也可以编写方法级别的异常处理:

const asyncMethod = (errorHandler?: (error?: Error) => void) => (target: any, propertyKey: string, descriptor: PropertyDescriptor) => {
const func = descriptor.value
return {
get() {
return (...args: any[]) => {
return Promise.resolve(func.apply(this, args)).catch(error => {
errorHandler && errorHandler(error)
})
}
},
set(newValue: any) {
return newValue
}
}
}


业务方用法类似,只是装饰器需要放在函数上:

const successRequest = () => Promise.resolve('a')
const failRequest = () => Promise.reject('b')

const asyncAction = asyncMethod(error => {
console.log('统一异常处理', error) // 统一异常处理 b
})

class Action {
@asyncAction async successReuqest() {
const result = await successRequest()
console.log('successReuqest', '处理返回值', result)
}

@asyncAction async failReuqest() {
const result = await failRequest()
console.log('failReuqest', '处理返回值', result) // 永远不会执行
}

@asyncAction async allReuqest() {
const result1 = await successRequest()
console.log('allReuqest', '处理返回值 success', result1)
const result2 = await failRequest()
console.log('allReuqest', '处理返回值 success', result2) // 永远不会执行
}
}

const action = new Action()
action.successReuqest()
action.failReuqest()
action.allReuqest()


12 业务场景 没有后顾之忧的主动权

我想描述的意思是,在第 11 章这种场景下,业务方是不用担心异常导致的
crash
,因为所有异常都会在顶层统一捕获,可能表现为弹出一个提示框,告诉用户请求发送失败。

业务方也不需要判断程序中是否存在异常,而战战兢兢的到处
try catch
,因为程序中任何异常都会立刻终止函数的后续执行,不会再引发更恶劣的结果。

像 golang 中异常处理方式,就存在这个问题

通过 err, result := func() 的方式,虽然固定了第一个参数是错误信息,但下一行代码免不了要以
if error {...}
开头,整个程序的业务代码充斥着巨量的不必要错误处理,而大部分时候,我们还要为如何处理这些错误想的焦头烂额。

而 js 异常冒泡的方式,在前端可以用提示框兜底,nodejs端可以返回 500 错误兜底,并立刻中断后续请求代码,等于在所有危险代码身后加了一层隐藏的
return


同时业务方也握有绝对的主动权,比如登录失败后,如果账户不存在,那么直接跳转到注册页,而不是傻瓜的提示用户帐号不存在,可以这样做:

async login(nickname, password) {
try {
const user = await userService.login(nickname, password)
// 跳转到首页,登录失败后不会执行到这,所以不用担心用户看到奇怪的跳转
} catch (error) {
if (error.no === -1) {
// 跳转到登录页
} else {
throw Error(error) // 其他错误不想管,把球继续踢走
}
}
}


补充

nodejs
端,记得监听全局错误,兜住落网之鱼:

process.on('uncaughtException', (error: any) => {
logger.error('uncaughtException', error)
})

process.on('unhandledRejection', (error: any) => {
logger.error('unhandledRejection', error)
})


在浏览器端,记得监听
window
全局错误,兜住漏网之鱼:

window.addEventListener('unhandledrejection', (event: any) => {
logger.error('unhandledrejection', event)
})
window.addEventListener('onrejectionhandled', (event: any) => {
logger.error('onrejectionhandled', event)
})


如有错误,欢迎斧正,本人 github 主页:https://github.com/ascoders 希望结交有识之士!
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: