您的位置:首页 > 移动开发 > Android开发

Volley基本使用及源码解析

2016-11-13 21:32 253 查看
相信大部分开发者在android开发过程中 都使用过volley这个jar包,下面我们就通过这个jar包的源码,对这个jar包进行深度解析,以便我们在使用这个jar包的情况下能够很好的了解这个jar包的利弊。

volley 基本用法

对于volley的基本用法相信很多开发人员都知道,下面我们以String的请求来讲解volley的基本用法

StringRequest的基本用法

1:创建requestQueue对象

2:创建StringRequest

3:将request添加到requestQueue中

GET 用法

下面是具体实例代码:

//1:创建requestQueue对象
RequestQueue requestQueue = Volley.newRequestQueue(this);
//2:创建StringRequest
StringRequest stringRequest = new StringRequest(GETURL, new Response.Listener<String>() {
@Override
public void onResponse(String response) {
Log.d("TAG","requestSuccess:"+response);
}
}, new Response.ErrorListener() {
@Override
public void onErrorResponse(VolleyError error) {
Log.d("TAG","requestError:"+error.getMessage());
}
});
//将request添加到requestQueue中
requestQueue.add(stringRequest);


程序运行之后我们可以看到其返回的内容:



通过日志的打印我们可以看到整个请求是成功的。

POST

上述请求是GET请求下面我们来看一下post请求是如何完成的

其实Post方法与get方法的基本步骤是一致的,只不过在构造 StringRequest方法中多穿入了一个参数,该参数指明该次的请求模式是get还是post。

//1:创建requestQueue对象
RequestQueue requestQueue = Volley.newRequestQueue(this);
//2:创建StringRequest
StringRequest stringRequest = new StringRequest(Request.Method.POST,GETURL, new Response.Listener<String>() {
@Override
public void onResponse(String response) {
Log.d("TAG","requestSuccess:"+response);
}
}, new Response.ErrorListener() {
@Override
public void onErrorResponse(VolleyError error) {
Log.d("TAG","requestError:"+error.getMessage());
}
}
)
{
@Override
protected Map<String, String> getParams() throws AuthFailureError {
return super.getParams();
}
};
//将request添加到requestQueue中
requestQueue.add(stringRequest);


细心的读者看到了在post请求中,我们同时重写了getParams(),实质上对于我们来说完全可以理解,因为post请求是不允许带有参数的,所以重写getParams()方法,在这里设置POST参数,这就是我们重写getParams() 方法的意义。

运行结果:



到这里我行各位读者对于volley 中使用StringRequest的请求,无论是get方式还是post方法都有初步的了解了。

JsonRequest基本用法

上述我们讲解了StringRequest的基本用法,接下来我们讲解Volley 中JsonRequest的基本用法。

JsonRequest的基本用法与StringRequest的用法基本一致,

1:创建requestQueue对象

2:创建JsonRequest

3:将request添加到requestQueue中

下面是具体实现代码:

//1:创建requestQueue对象
RequestQueue requestQueue = Volley.newRequestQueue(this);
//2:创建JsonObjectRequest
JsonObjectRequest jsonObjectRequest = new JsonObjectRequest(JSONURL, null, new Response.Listener<JSONObject>() {
@Override
public void onResponse(JSONObject response) {
Log.d("TAG","requestSuccess:"+response.toString());
}
}, new Response.ErrorListener() {
@Override
public void onErrorResponse(VolleyError error) {
Log.d("TAG","requestError:"+error.getMessage());
}
}){
@Override
protected Map<String, String> getParams() throws AuthFailureError {
//  创建json串
return super.getParams();
}
};
//将request添加到requestQueue中
requestQueue.add(jsonObjectRequest);


注:JsonObjectRequest请求方式根据 参数2进行区别的 jsobObject 第二个参数需要传入的形式为Json形式,如果传入Json,此时JsonRequest请求方式为post请求,如果传入为null 则JsonRequest请求方式为get

上述这点我们可以通过源代码看到:

public JsonObjectRequest(String url, JSONObject jsonRequest, Listener<JSONObject> listener,
ErrorListener errorListener) {
this(jsonRequest == null ? Method.GET : Method.POST, url, jsonRequest,
listener, errorListener);
}


程序运行我们可以看到:



至此相信读者对volley中JsonRequest的请求有一定的了解了。

Volley 加载 image

ImageRequest 的基本使用

在volley使用过程中,我们会经常用到网络图片的加载,针对图片加载Volley提供了 ImageRequest加载方式。

实质上ImageRequest方式加载图片与StringRequest以及JsonRequest方式是一样的;

1:创建requestQueue对象

2:创建ImageRequest

3:将request添加到requestQueue中

下面我们来介绍ImageRequest是如何加载图片的;

具体实现代码

RequestQueue requestQueue = Volley.newRequestQueue(this);
//String url, Response.Listener<Bitmap> listener, int maxWidth, int maxHeight, Config decodeConfig, Response.ErrorListener errorListener
/**
*0, // 图片的宽度,如果是0,就不会进行压缩,否则会根据数值进行压缩
*0, // 图片的高度,如果是0,就不进行压缩,否则会压缩
*Config.ARGB_8888, // 图片的颜色属性
*/
ImageRequest imageRequest = new ImageRequest(IMAGEUEL, new Response.Listener<Bitmap>() {
@Override
public void onResponse(Bitmap response) {
Log.d("TAG","requestSuccess:"+response.toString());
}
}, 0, 0, Bitmap.Config.ARGB_8888, new Response.ErrorListener() {
@Override
public void onErrorResponse(VolleyError error) {
Log.d("TAG","requestError:"+error.getMessage());
}
});

requestQueue.add(imageRequest);


运行程序之后我们可以看到



在这里我们可以通过源码看到ImageRequest加载方式是get方式;

public ImageRequest(String url, Response.Listener<Bitmap> listener, int maxWidth, int maxHeight,
ScaleType scaleType, Config decodeConfig, Response.ErrorListener errorListener) {
super(Method.GET, url, errorListener);
...
}


ImageLoader图片加载方式

如果你觉得ImageRequest已经非常好用了,那我只能说你太容易满足了 ^_^。实际上,Volley在请求网络图片方面可以做到的还远远不止这些,而ImageLoader就是一个很好的例子。ImageLoader也可以用于加载网络上的图片,并且它的内部也是使用ImageRequest来实现的,不过ImageLoader明显要比ImageRequest更加高效,因为它不仅可以帮我们对图片进行缓存,还可以过滤掉重复的链接,避免重复发送请求。

下面我们来看一下ImageLoader是如何实现图片加载的。

大致可以分为以下四步:

1. 创建一个RequestQueue对象。

2. 创建一个ImageLoader对象。

3. 获取一个ImageListener对象。

4. 调用ImageLoader的get()方法加载网络上的图片。

具体实现代码:

// 创建一个RequestQueue对象。
RequestQueue requestQueue = Volley.newRequestQueue(this);
//创建一个ImageLoader对象
ImageLoader imageLoader = new ImageLoader(requestQueue, new ImageLoader.ImageCache() {
@Override
public Bitmap getBitmap(String url) {
return null;
}

@Override
public void putBitmap(String url, Bitmap bitmap) {

}
});
//获取一个ImageListener对象。
/**
* 1:图片显示view
* 2:加载时默认图片
* 3:加载失败时默认图片
*/
ImageLoader.ImageListener imageListener = ImageLoader.getImageListener(imageView,
R.drawable.ic_launcher, R.drawable.ic_launcher);
//调用ImageLoader的get()方法加载网络上的图片
/**
*  200: 设置网络加载之后 图片允许的最大宽
*  200: 设置网络加载之后 图片允许的最大高
*/
imageLoader.get(IMAGEUEL, imageListener,200,200);


程序运行结果我们可以看到:



到这里我们对Volley中的基本使用已经介绍完成,下面我们将对Volley源码进行详细解析。

Volley 源码解析

上述文章中已经介绍来Volley各种Request的使用,下面我们根据Volley源码来分析内部是如何具体实现的。

在 volley官网有一张图其实是很明确的表示了volley 的整个请求流程,该图如下图所示;



下面我们就根据上图流程来介绍volley的整个请求流程。

使用Volley的第一步,首先要调用Volley.newRequestQueue(context)方法来获取一个RequestQueue对象,那么我们自然要从这个方法开始看起了,代码如下所示

public static RequestQueue newRequestQueue(Context context) {
return newRequestQueue(context, null);
}


可以看到内部实质上是直接调用了 newRequestQueue(…)方法

下面我们来看 newRequestQueue 内部主要做了什么;

public static RequestQueue newRequestQueue(Context context, HttpStack stack) {
File cacheDir = new File(context.getCacheDir(), DEFAULT_CACHE_DIR);

String userAgent = "volley/0";
try {
String packageName = context.getPackageName();
PackageInfo info = context.getPackageManager().getPackageInfo(packageName, 0);
userAgent = packageName + "/" + info.versionCode;
} catch (NameNotFoundException e) {
}

if (stack == null) {
if (Build.VERSION.SDK_INT >= 9) {
stack = new HurlStack();
} else {
// Prior to Gingerbread, HttpUrlConnection was unreliable.
// See: http://android-developers.blogspot.com/2011/09/androids-http-clients.html stack = new HttpClientStack(AndroidHttpClient.newInstance(userAgent));
}
}

Network network = new BasicNetwork(stack);

RequestQueue queue = new RequestQueue(new DiskBasedCache(cacheDir), network);
queue.start();

return queue;
}


首先我们在代码中看到 如果stack为null 则会根据sdk不同的版本去创建对应的stack对象,创建好stack对象之后,紧接着创建一个Network 它是用于根据传入的HttpStack对象来处理网络请求的,

之后创建一个RequestQueue 对象,创建好之后,调用start();方法,最后将 RequestQueue 对象返回出去,到这里我们 newRequestQueue 方法执行完成了,同时返回了一个RequestQueue对象。

那么RequestQueue的start()方法内部到底执行了什么东西呢?我们跟进去瞧一瞧;

public void start() {
stop();  // Make sure any currently running dispatchers are stopped.
// Create the cache dispatcher and start it.
mCacheDispatcher = new CacheDispatcher(mCacheQueue, mNetworkQueue, mCache, mDelivery);
mCacheDispatcher.start();

// Create network dispatchers (and corresponding threads) up to the pool size.
for (int i = 0; i < mDispatchers.length; i++) {
NetworkDispatcher networkDispatcher = new NetworkDispatcher(mNetworkQueue, mNetwork,
mCache, mDelivery);
mDispatchers[i] = networkDispatcher;
networkDispatcher.start();
}
}


在这段代码中我们看到 内部首选创建一个CacheDispatcher 对象,同时在for循环中创建多个 NetworkDispatcher 对象,然后这些对象,调用start方法。而 CacheDispatcher、NetworkDispatcher这两个对象通过源码我们可以看到实质上都是Thread对象。

public class CacheDispatcher extends Thread {}


public class NetworkDispatcher extends Thread{}


而在RequestQueue构造函数中我们可以看到

/** Number of network request dispatcher threads to start. */
private static final int DEFAULT_NETWORK_THREAD_POOL_SIZE = 4;
public RequestQueue(Cache cache, Network network) {
this(cache, network, DEFAULT_NETWORK_THREAD_POOL_SIZE);
}


通过这个我们可以知道在RequestQueue对象创建时,同时会创建5个线程,分别为1个缓存线程,4个网络线程。

在得到RequestQueue对象,我们构建各种request对象,然后调用add方法将 request添加到 RequestQueue对象中。

下面我们只需要看一下add方法内是如何实现的;

public <T> Request<T> add(Request<T> request) {
// Tag the request as belonging to this queue and add it to the set of current requests.
request.setRequestQueue(this);
synchronized (mCurrentRequests) {
mCurrentRequests.add(request);
}

// Process requests in the order they are added.
request.setSequence(getSequenceNumber());
request.addMarker("add-to-queue");

// If the request is uncacheable, skip the cache queue and go straight to the network.
if (!request.shouldCache()) {
mNetworkQueue.add(request);
return request;
}

// Insert request into stage if there's already a request with the same cache key in flight.
synchronized (mWaitingRequests) {
String cacheKey = request.getCacheKey();
if (mWaitingRequests.containsKey(cacheKey)) {
// There is already a request in flight. Queue up.
Queue<Request<?>> stagedRequests = mWaitingRequests.get(cacheKey);
if (stagedRequests == null) {
stagedRequests = new LinkedList<Request<?>>();
}
stagedRequests.add(request);
mWaitingRequests.put(cacheKey, stagedRequests);
if (VolleyLog.DEBUG) {
VolleyLog.v("Request for cacheKey=%s is in flight, putting on hold.", cacheKey);
}
} else {
// Insert 'null' queue for this cacheKey, indicating there is now a request in
// flight.
mWaitingRequests.put(cacheKey, null);
mCacheQueue.add(request);
}
return request;
}
}


add 方法内部代码比较长,我们只需要关注内部比较重点的代码即可,

if (!request.shouldCache()) {
mNetworkQueue.add(request);
return request;
}


在这段代码中我们可以看到首先判断 requset是否可以缓存,如果为false,则 将该request 直接添加网络队列中。

否则

mCacheQueue.add(request);


将request 添加到 缓存队列中。

在默认情况下是将request添加到缓存队列中;我们可以通过

public final Request<?> setShouldCache(boolean shouldCache) {
mShouldCache = shouldCache;
return this;
}


方法来设置该请求是否可以添加到缓存队列中。

在add 方法之后,每条请求添加到缓存队列中,于是后台等待的无论是缓存线程还是网络线程开始运行起来,下面我们分别来看一下CacheDispatcher中的run()方法以及NetworkDispatcher 的run() 方法。

先看一下 CacheDispatcher中的run()方法;

@Override
public void run() {
if (DEBUG) VolleyLog.v("start new dispatcher");
Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);

// Make a blocking call to initialize the cache.
mCache.initialize();

while (true) {
try {
// Get a request from the cache triage queue, blocking until
// at least one is available.
final Request<?> request = mCacheQueue.take();
request.addMarker("cache-queue-take");

// If the request has been canceled, don't bother dispatching it.
if (request.isCanceled()) {
request.finish("cache-discard-canceled");
continue;
}

// Attempt to retrieve this item from cache.
Cache.Entry entry = mCache.get(request.getCacheKey());
if (entry == null) {
request.addMarker("cache-miss");
// Cache miss; send off to the network dispatcher.
mNetworkQueue.put(request);
continue;
}

// If it is completely expired, just send it to the network.
if (entry.isExpired()) {
request.addMarker("cache-hit-expired");
request.setCacheEntry(entry);
mNetworkQueue.put(request);
continue;
}

// We have a cache hit; parse its data for delivery back to the request.
request.addMarker("cache-hit");
Response<?> response = request.parseNetworkResponse(
new NetworkResponse(entry.data, entry.responseHeaders));
request.addMarker("cache-hit-parsed");

if (!entry.refreshNeeded()) {
// Completely unexpired cache hit. Just deliver the response.
mDelivery.postResponse(request, response);
} else {
// Soft-expired cache hit. We can deliver the cached response,
// but we need to also send the request to the network for
// refreshing.
request.addMarker("cache-hit-refresh-needed");
request.setCacheEntry(entry);

// Mark the response as intermediate.
response.intermediate = true;

// Post the intermediate response back to the user and have
// the delivery then forward the request along to the network.
mDelivery.postResponse(request, response, new Runnable() {
@Override
public void run() {
try {
mNetworkQueue.put(request);
} catch (InterruptedException e) {
// Not much we can do about this.
}
}
});
}

} catch (InterruptedException e) {
// We may have been interrupted because it was time to quit.
if (mQuit) {
return;
}
continue;
}
}
}


这个方法有点长,我们看到内部存在一个 while(true)循环,这说明这个缓存线程始终在运行,紧接这在下面这段代码中我们可以看到

Cache.Entry entry = mCache.get(request.getCacheKey());
if (entry == null) {
request.addMarker("cache-miss");
// Cache miss; send off to the network dispatcher.
mNetworkQueue.put(request);
continue;
}

// If it is completely expired, just send it to the network.
if (entry.isExpired()) {
request.addMarker("cache-hit-expired");
request.setCacheEntry(entry);
mNetworkQueue.put(request);
continue;
}


首先从缓存中取出响应结果,如果为空的话则把这条请求加入到网络请求队列中,如果不为空的话再判断该缓存是否已过期,如果已经过期了则同样把这条请求加入到网络请求队列中,否则就认为不需要重发网络请求,直接使用缓存中的数据。

之后调用

Response<?> response = request.parseNetworkResponse(
new NetworkResponse(entry.data, entry.responseHeaders));


parseNetworkResponse 对数据进行解析,解析完成之后,通过ResponseDelivery 类 将数据回调出去。

下面我们 来看一下 NetworkDispatcher 的run() 方法是如何实现的;

@Override
public void run() {
Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
while (true) {
long startTimeMs = SystemClock.elapsedRealtime();
Request<?> request;
try {
// Take a request from the queue.
request = mQueue.take();
} catch (InterruptedException e) {
// We may have been interrupted because it was time to quit.
if (mQuit) {
return;
}
continue;
}

try {
request.addMarker("network-queue-take");

// If the request was cancelled already, do not perform the
// network request.
if (request.isCanceled()) {
request.finish("network-discard-cancelled");
continue;
}

addTrafficStatsTag(request);

// Perform the network request.
NetworkResponse networkResponse = mNetwork.performRequest(request);
request.addMarker("network-http-complete");

// If the server returned 304 AND we delivered a response already,
// we're done -- don't deliver a second identical response.
if (networkResponse.notModified && request.hasHadResponseDelivered()) {
request.finish("not-modified");
continue;
}

// Parse the response here on the worker thread.
Response<?> response = request.parseNetworkResponse(networkResponse);
request.addMarker("network-parse-complete");

// Write to cache if applicable.
// TODO: Only update cache metadata instead of entire record for 304s.
if (request.shouldCache() && response.cacheEntry != null) {
mCache.put(request.getCacheKey(), response.cacheEntry);
request.addMarker("network-cache-written");
}

// Post the response back.
request.markDelivered();
mDelivery.postResponse(request, response);
} catch (VolleyError volleyError) {
volleyError.setNetworkTimeMs(SystemClock.elapsedRealtime() - startTimeMs);
parseAndDeliverNetworkError(request, volleyError);
} catch (Exception e) {
VolleyLog.e(e, "Unhandled exception %s", e.toString());
VolleyError volleyError = new VolleyError(e);
volleyError.setNetworkTimeMs(SystemClock.elapsedRealtime() - startTimeMs);
mDelivery.postError(request, volleyError);
}
}
}


这段代码中我们可以看到内部同样有一个 while(true)方法,同样说明这个网络线程始终在运行,然后我们可以看到 内部调用了

Network的performRequest()方法来去发送网络请求,而Network是一个接口,这里具体的实现是BasicNetwork,我们只需要看BasicNetwork 中performRequest 方法的具体实现。

@Override
public NetworkResponse performRequest(Request<?> request) throws VolleyError {
long requestStart = SystemClock.elapsedRealtime();
while (true) {
HttpResponse httpResponse = null;
byte[] responseContents = null;
Map<String, String> responseHeaders = Collections.emptyMap();
try {
// Gather headers.
Map<String, String> headers = new HashMap<String, String>();
addCacheHeaders(headers, request.getCacheEntry());
httpResponse = mHttpStack.performRequest(request, headers);
StatusLine statusLine = httpResponse.getStatusLine();
int statusCode = statusLine.getStatusCode();

responseHeaders = convertHeaders(httpResponse.getAllHeaders());
// Handle cache validation.
if (statusCode == HttpStatus.SC_NOT_MODIFIED) {

Entry entry = request.getCacheEntry();
if (entry == null) {
return new NetworkResponse(HttpStatus.SC_NOT_MODIFIED, null,
responseHeaders, true,
SystemClock.elapsedRealtime() - requestStart);
}

// A HTTP 304 response does not have all header fields. We
// have to use the header fields from the cache entry plus
// the new ones from the response.
// http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.5 entry.responseHeaders.putAll(responseHeaders);
return new NetworkResponse(HttpStatus.SC_NOT_MODIFIED, entry.data,
entry.responseHeaders, true,
SystemClock.elapsedRealtime() - requestStart);
}

// Some responses such as 204s do not have content.  We must check.
if (httpResponse.getEntity() != null) {
responseContents = entityToBytes(httpResponse.getEntity());
} else {
// Add 0 byte response as a way of honestly representing a
// no-content request.
responseContents = new byte[0];
}

// if the request is slow, log it.
long requestLifetime = SystemClock.elapsedRealtime() - requestStart;
logSlowRequests(requestLifetime, request, responseContents, statusLine);

if (statusCode < 200 || statusCode > 299) {
throw new IOException();
}
return new NetworkResponse(statusCode, responseContents, responseHeaders, false,
SystemClock.elapsedRealtime() - requestStart);
} catch (SocketTimeoutException e) {
attemptRetryOnException("socket", request, new TimeoutError());
} catch (ConnectTimeoutException e) {
attemptRetryOnException("connection", request, new TimeoutError());
} catch (MalformedURLException e) {
throw new RuntimeException("Bad URL " + request.getUrl(), e);
} catch (IOException e) {
int statusCode;
if (httpResponse != null) {
statusCode = httpResponse.getStatusLine().getStatusCode();
} else {
throw new NoConnectionError(e);
}
VolleyLog.e("Unexpected response code %d for %s", statusCode, request.getUrl());
NetworkResponse networkResponse;
if (responseContents != null) {
networkResponse = new NetworkResponse(statusCode, responseContents,
responseHeaders, false, SystemClock.elapsedRealtime() - requestStart);
if (statusCode == HttpStatus.SC_UNAUTHORIZED ||
statusCode == HttpStatus.SC_FORBIDDEN) {
attemptRetryOnException("auth",
request, new AuthFailureError(networkResponse));
} else if (statusCode >= 400 && statusCode <= 499) {
// Don't retry other client errors.
throw new ClientError(networkResponse);
} else if (statusCode >= 500 && statusCode <= 599) {
if (request.shouldRetryServerErrors()) {
attemptRetryOnException("server",
request, new ServerError(networkResponse));
} else {
throw new ServerError(networkResponse);
}
} else {
// 3xx? No reason to retry.
throw new ServerError(networkResponse);
}
} else {
attemptRetryOnException("network", request, new NetworkError());
}
}
}
}


这段方法中大多都是一些网络请求细节方面的东西,我们并不需要太多关心,需要注意的是内部调用了

httpResponse = mHttpStack.performRequest(request, headers);


这里的HttpStack就是在一开始调用newRequestQueue()方法是创建的实例,默认情况下如果系统版本号大于9就创建的HurlStack对象,否则创建HttpClientStack对象。这两个对象的内部实际就是分别使用HttpURLConnection和HttpClient来发送网络请求的,我们就不再跟进去阅读了,之后会将服务器返回的数据组装成一个NetworkResponse对象进行返回。

在NetworkResponse 返回之后,调用了

Response<?> response = request.parseNetworkResponse(networkResponse);


对返回对response数据进行解析,解析完成之后调用

mDelivery.postResponse(request, response);


方法来回调解析出的数据。

下面我们来看数据在获取成功并解析之后是如何通过mDelivery 接口将数据回调出去的。

mDelivery 是 一个ResponseDelivery接口,其实现类是

private final Executor mResponsePoster;

public class ExecutorDelivery implements ResponseDelivery {
...

@Override
public void postResponse(Request<?> request, Response<?> response) {
postResponse(request, response, null);
}

@Override
public void postResponse(Request<?> request, Response<?> response, Runnable runnable) {
request.markDelivered();
request.addMarker("post-response");
mResponsePoster.execute(new ResponseDeliveryRunnable(request, response, runnable));
}

@Override
public void postError(Request<?> request, VolleyError error) {
request.addMarker("post-error");
Response<?> response = Response.error(error);
mResponsePoster.execute(new ResponseDeliveryRunnable(request, response, null));
}

public void run() {
// If this request has canceled, finish it and don't deliver.
if (mRequest.isCanceled()) {
mRequest.finish("canceled-at-delivery");
return;
}

// Deliver a normal response or error, depending.
if (mResponse.isSuccess()) {
mRequest.deliverResponse(mResponse.result);
} else {
mRequest.deliverError(mResponse.error);
}

// If this is an intermediate response, add a marker, otherwise we're done
// and the request can be finished.
if (mResponse.intermediate) {
mRequest.addMarker("intermediate-response");
} else {
mRequest.finish("done");
}

// If we have been provided a post-delivery runnable, run it.
if (mRunnable != null) {
mRunnable.run();
}
}
}


可以看到内部直接调用了postResponse ,而postResponse内部调用了mResponsePoster.execute 方法,在调用execute方法时,执行了run 方法,而在run方法内部我们可以看到

mRequest.deliverResponse(mResponse.result)


将数据回调出去。

至此这里我们就把Volley的完整执行流程全部梳理了一遍,你是不是已经感觉已经很清晰了呢,下面在看一下该图是不是更加清晰了呢?

内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息