您的位置:首页 > 运维架构 > Linux

Linux下程序的机器级表示学习心得

2016-10-19 01:20 190 查看

Linux下程序的机器级表示学习心得

上周学习完Linux程序的机器级表示后,对于其中有些还是掌握的不太透彻。对于老师提出的关于本章一些细节的问题还是有不会,所以又重新温习了一下上周的学习内容,以下为学习心得。

分析反汇编

操作过程

分析反汇编采用了书上的一个简单案例。C语言代码如下。

int a(int x)
{
returnx+1;
}

int b(int x)
{
return a(x);
}

int main (void)
{
return b(8)+14;
}


使用
vim
编辑器编译代码
main.c




使用命令
gcc -S main.c -o main.s
得到汇编代码。(此时的汇编代码有以.开头的代码,删除它们之后就是正常书中给出的汇编代码。

得到的汇编代码



使用
gdb
bt/frame/up/down
指令动态查看调用线帧的情况。





分析

main
:开始执行,保存帧指针
%ebp
,并设置新的帧指针

pushl $8
分配4字节的栈空间,并且设置
arg1=8


调用b:
call b


b同样初始化帧指针,分配栈空间,和之前的main函数相同

pushl 8(%ebp)
%esp
中的立即数8存入栈中

调用a:
call a


a被调用,初始化栈指针,分配栈空间

%eax
与立即数 1 相加

在a结束前弹栈

ret
返回b中
call
的调用位置

b也结束,
return返
main
call
调用的位置

main
继续
%eax
加14的操作

leave
为返回准备栈,相当于
%ebp
出栈,最后
ret
结束

即:调用者P和被调用者Q,则Q的参数放在P的栈帧中,当P调用Q的时候,P中的返回地址被压入栈中,形成P的栈帧末尾。返回地址就是当程序从Q返回时应继续执行的地方,Q栈帧从保存的帧指针的值开始后是保存其他寄存器的值。



结合backtrace命令分析栈帧

首先
backtrace/bt
用来打印栈帧指针,也可以在该命令后加上要打印的栈帧的个数,查看程序执行到此时,是经过哪些函数呼叫的程序,程序“调用堆栈”是当前函数之前的所有已调用函数的列表(包括当前函数)。每个函数及其变量都分配了一个“帧”,最近调用的函数在0号帧中(“底部”帧)

命令有

- `fame farme1 `用于打印指定栈帧
- ` info reg `查看寄存器使用情况
- ` info stack` 产看堆栈使用情况
-  `up/down` 跳到上一层/下一层函数


综述:

- 先将调用者(A)的堆栈的基址(`%ebp`)入栈,以保存之前任务的信息。

- 然后将调用者(A)的栈顶指针(`%esp`)的值赋给`%ebp`,作为新的基址(即被调用者B的栈底)。

- 然后在这个基址(被调用者B的栈底)上开辟(一般用sub指令)相应的空间用作被调用者B的栈空间。

- 函数B返回后,从当前栈帧的%ebp即恢复为调用者A的栈顶(`%esp)`,使栈顶恢复函数B被调用前的位置;然后调用者A再从恢复后的栈顶可弹出之前的%ebp值(可以这么做是因为这个值在函数调用前一步被压入堆栈)。这样,`%ebp`和`%esp`就都恢复了调用函数B前的位置,也就是栈恢复函数B调用前的状态。这样就解释了栈帧的出现和消失


这个过程在AT&T汇编中通过两条指令完成,即:
leave
ret
。这两条指令更直白点就相当于:
mov   %ebp , %esp
pop    %ebp






下面我们使用GDB调试
main.c
的代码,使用刚才编译好的main镜像。

-
gdb    start
(启动gdb)

-
(gdb) file     main
(加载镜像文件)

-
(gdb) break  main
(把
main()
设置为断点,注意gdb并没有把断点设置在main的第一条指令,而是设置在了调整栈指针为局部变量保留空间之后)

-
(gdb) run
(运行程序)

-
(gdb) stepi
(单步执行,
stepi
命令执行之后显示出来的源代码行或者指令地址,注意:都是即将执行的指令,而不是刚刚执行完的指令!对于更复杂的例子会有明显的变化)





利用gdb对寄存器进行分析


通过gdb调试可执行文件查看
%eip
,
%ebp
,
%esp
等寄存器内容如何变化。



在linux中gdb调试汇编文件需要先用
gcc -g3 -o * *.c
的命令来将c语言文件编译成可调试汇编的可执行文件。

通过调试过程中的
stepi
print /x $***
可以查询到相应寄存器的内容:

根据之前的main函数逐步使用上面的代码,可以获得不同寄存器的变化。

| number | %eax寄存器变化| %esp寄存器变化|%ebp寄存器变化时间|

| -----------| :-----------:|:------------:|:---------------:|

| 1 | Ox4004fc | Oxffffde18 | Oxffffde20

| 2 | Ox4004fc | Oxffffde18 | Oxffffde20

| 3 | Ox8 | Oxffffde18 | Oxffffde20

| 4 | Ox8 | Oxffffde18 | Oxffffde20

| 5 | Ox8 | Oxffffde10 | Oxffffde20

| 6 | Ox8 | Oxffffde08 | Oxffffde20

| 7 | Ox8 | Oxffffde08 | Oxffffde08

| 8 | Ox8 | Oxffffde08 | Oxffffde08

| 9 | Ox8 | Oxffffde08 | Oxffffde08

| 10 | Ox9 | Oxffffde08 | Oxffffde08

| 11 | Ox9 | Oxffffde10 | Oxffffde20

| 12 | Ox9 | Oxffffde18 | Oxffffde20

| 13 | Ox9 | Oxffffde28 | Oxffffde30

| 14 | Ox9 | Oxffffde30 | Oxffffde30

| ... | ... | ... | ...

如果想观察三个寄存器的每一步的变化配合
gdb stepi
可以重复上述步骤。

部分过程截图。



由上图可以看到三个寄存器的初始值



由上图可以看到三个寄存器在执行完第一条指令之后的内容的变换

注意:在64位中
rip
就是
eip
rbp
就是
ebp
rsp
就是。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: