您的位置:首页 > Web前端

Caffe学习系列:模型各层数据和参数可视化

2016-07-13 10:33 681 查看
先用caffe对cifar10进行训练,将训练的结果模型进行保存,得到一个caffemodel,然后从测试图片中选出一张进行测试,并进行可视化。

In [1]:

#加载必要的库
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import sys,os,caffe


In [2]:

#设置当前目录,判断模型是否训练好
caffe_root = '/home/bnu/caffe/'
sys.path.insert(0, caffe_root + 'python')
os.chdir(caffe_root)
if not os.path.isfile(caffe_root + 'examples/cifar10/cifar10_quick_iter_4000.caffemodel'):
print("caffemodel is not exist...")


In [3]:

#利用提前训练好的模型,设置测试网络
caffe.set_mode_gpu()
net = caffe.Net(caffe_ro
1d25c
ot + 'examples/cifar10/cifar10_quick.prototxt',
caffe_root + 'examples/cifar10/cifar10_quick_iter_4000.caffemodel',
caffe.TEST)


In [4]:

net.blobs['data'].data.shape


Out[4]:

(1, 3, 32, 32)


In [5]:

#加载测试图片,并显示
im = caffe.io.load_image('examples/images/32.jpg')
print im.shape
plt.imshow(im)
plt.axis('off')


 

(32, 32, 3)


Out[5]:

(-0.5, 31.5, 31.5, -0.5)


 

In [6]:

# 编写一个函数,将二进制的均值转换为python的均值
def convert_mean(binMean,npyMean):
blob = caffe.proto.caffe_pb2.BlobProto()
bin_mean = open(binMean, 'rb' ).read()
blob.ParseFromString(bin_mean)
arr = np.array( caffe.io.blobproto_to_array(blob) )
npy_mean = arr[0]
np.save(npyMean, npy_mean )
binMean=caffe_root+'examples/cifar10/mean.binaryproto'
npyMean=caffe_root+'examples/cifar10/mean.npy'
convert_mean(binMean,npyMean)


In [7]:

#将图片载入blob中,并减去均值
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_transpose('data', (2,0,1))
transformer.set_mean('data', np.load(npyMean).mean(1).mean(1)) # 减去均值
transformer.set_raw_scale('data', 255)
transformer.set_channel_swap('data', (2,1,0))
net.blobs['data'].data[...] = transformer.preprocess('data',im)
inputData=net.blobs['data'].data


In [8]:

#显示减去均值前后的数据
plt.figure()
plt.subplot(1,2,1),plt.title("origin")
plt.imshow(im)
plt.axis('off')
plt.subplot(1,2,2),plt.title("subtract mean")
plt.imshow(transformer.deprocess('data', inputData[0]))
plt.axis('off')


Out[8]:

(-0.5, 31.5, 31.5, -0.5)


 

In [9]:

#运行测试模型,并显示各层数据信息
net.forward()
[(k, v.data.shape) for k, v in net.blobs.items()]


Out[9]:

[('data', (1, 3, 32, 32)),
('conv1', (1, 32, 32, 32)),
('pool1', (1, 32, 16, 16)),
('conv2', (1, 32, 16, 16)),
('pool2', (1, 32, 8, 8)),
('conv3', (1, 64, 8, 8)),
('pool3', (1, 64, 4, 4)),
('ip1', (1, 64)),
('ip2', (1, 10)),
('prob', (1, 10))]


In [10]:

#显示各层的参数信息
[(k, v[0].data.shape) for k, v in net.params.items()]


Out[10]:

[('conv1', (32, 3, 5, 5)),
('conv2', (32, 32, 5, 5)),
('conv3', (64, 32, 5, 5)),
('ip1', (64, 1024)),
('ip2', (10, 64))]


In [11]:

# 编写一个函数,用于显示各层数据
def show_data(data, padsize=1, padval=0):
data -= data.min()
data /= data.max()

# force the number of filters to be square
n = int(np.ceil(np.sqrt(data.shape[0])))
padding = ((0, n ** 2 - data.shape[0]), (0, padsize), (0, padsize)) + ((0, 0),) * (data.ndim - 3)
data = np.pad(data, padding, mode='constant', constant_values=(padval, padval))

# tile the filters into an image
data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))
data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])
plt.figure()
plt.imshow(data,cmap='gray')
plt.axis('off')
plt.rcParams['figure.figsize'] = (8, 8)
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'


In [12]:

#显示第一个卷积层的输出数据和权值(filter)
show_data(net.blobs['conv1'].data[0])
print net.blobs['conv1'].data.shape
show_data(net.params['conv1'][0].data.reshape(32*3,5,5))
print net.params['conv1'][0].data.shape


 

(1, 32, 32, 32)
(32, 3, 5, 5)


 

 

In [13]:

#显示第一次pooling后的输出数据
show_data(net.blobs['pool1'].data[0])
net.blobs['pool1'].data.shape


Out[13]:

(1, 32, 16, 16)


 

In [14]:

#显示第二次卷积后的输出数据以及相应的权值(filter)
show_data(net.blobs['conv2'].data[0],padval=0.5)
print net.blobs['conv2'].data.shape
show_data(net.params['conv2'][0].data.reshape(32**2,5,5))
print net.params['conv2'][0].data.shape


 

(1, 32, 16, 16)
(32, 32, 5, 5)


 

 

In [15]:

#显示第三次卷积后的输出数据以及相应的权值(filter),取前1024个进行显示
show_data(net.blobs['conv3'].data[0],padval=0.5)
print net.blobs['conv3'].data.shape
show_data(net.params['conv3'][0].data.reshape(64*32,5,5)[:1024])
print net.params['conv3'][0].data.shape


 

(1, 64, 8, 8)
(64, 32, 5, 5)


 

 

In [16]:

#显示第三次池化后的输出数据
show_data(net.blobs['pool3'].data[0],padval=0.2)
print net.blobs['pool3'].data.shape


 

(1, 64, 4, 4)


 

In [17]:

# 最后一层输入属于某个类的概率
feat = net.blobs['prob'].data[0]
print feat
plt.plot(feat.flat)


 

[  5.21440245e-03   1.58397834e-05   3.71246301e-02   2.28459597e-01
1.08315737e-03   7.17785358e-01   1.91939052e-03   7.67927198e-03
6.13298907e-04   1.05107691e-04]


Out[17]:

[<matplotlib.lines.Line2D at 0x7f3d882b00d0>]


 

 

从输入的结果和图示来看,最大的概率是7.17785358e-01,属于第5类(标号从0开始)。与cifar10中的10种类型名称进行对比:

airplane、automobile、bird、cat、deer、dog、frog、horse、ship、truck

根据测试结果,判断为dog。 测试无误!
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签:  测试 可视化 caffe cnn