您的位置:首页 > 其它

机电传动控制第四周学习笔记和仿真作业

2016-03-20 22:15 323 查看
机电传动控制第四周学习笔记

三相异步电机的基本结构由定子和转子组成。其中定子由铁芯,绕组和机座组成,转子由铁芯和绕组组成。

旋转磁场的级数和旋转速度

N0=60f/p

3.转差率 S=(n0-n)/n0

4.定子绕组有星形连接和三角形连接两种

5.三相异步电机的固有机械特性有四个特殊点:

T=0,n=n0(S=0)理想空载工作点

T=TN,n=nN(S=SN) 额定工作点

T=Tst,n=0(S=1) 启动工作点

T=Tmax,n=nm(S=Sm) 临界工作点

6.降压时的人为机械特性:Sm不变,Tmax减小,人为与固有的转矩之比等于相应电压的二次方之比

7.定子电路串接电阻或电抗的人为机械特性:与降压相似

8.笼型异步电机的启动方法:

直接启动 : Ist/IN<=0.75+电源总容量/(4x电动机功率)

电阻降压启动:适用于空载和轻载,不经济

Y-降压启动:启动电流小,经济,但启动转矩小,且启动电压不能按实际需求调节,适用空载和轻载。

自耦变压器降压调节:不适用于频繁的启动,适用于启动转矩大,容量较大的电机。

9.三相异步电机的调速有变级对数调速,变转差率调速和变频调速。

10.制动特性:反馈制动,反接制动,能耗制动。

 

仿真结果:

采用了全压启动,转子串接电阻调速,以及电源反接进行制动

 

代码:

 

model SACIM "A Simple AC Induction Motor Model"

 

type Voltage=Real(unit="V");

 

type Current=Real(unit="A");

 

type Resistance=Real(unit="Ohm");

 

type Inductance=Real(unit="H");

 

type Speed=Real(unit="r/min");

 

type Torque=Real(unit="N.m");

 

type Inertia=Real(unit="kg.m^2");

 

type Frequency=Real(unit="Hz");

 

type Flux=Real(unit="Wb");

 

type Angle=Real(unit="rad");

 

type AngularVelocity=Real(unit="rad/s");

 

 

 

constant Real Pi = 3.1415926;

 

 

 

Current i_A"A Phase Current of Stator";

 

Current i_B"B Phase Current of Stator";

 

Current i_C"C Phase Current of Stator";

 

Voltage u_A"A Phase Voltage of Stator";

 

Voltage u_B"B Phase Voltage of Stator";

 

Voltage u_C"C Phase Voltage of Stator";

 

Current i_a"A Phase Current of Rotor";

 

Current i_b"B Phase Current of Rotor";

 

Current i_c"C Phase Current of Rotor";

 

Frequency f_s"Frequency of Stator";

 

Torque Tm"Torque of the Motor";

 

Speed n"Speed of the Motor";

 

 

 

Flux Psi_A"A Phase Flux-Linkage of Stator";

 

Flux Psi_B"B Phase Flux-Linkage of Stator";

 

Flux Psi_C"C Phase Flux-Linkage of Stator";

 

Flux Psi_a"a Phase Flux-Linkage of Rotor";

 

Flux Psi_b"b Phase Flux-Linkage of Rotor";

 

Flux Psi_c"c Phase Flux-Linkage of Rotor";

 

 

 

Angle phi"Electrical Angle of Rotor";

 

Angle phi_m"Mechnical Angle of Rotor";

 

AngularVelocity w"Angular Velocity of Rotor";

 

 

 

Torque Tl"Load Torque";

 

 

 

Resistance Rs"Stator Resistance";

 

parameter Resistance Rr=0.408"Rotor Resistance";

 

parameter Inductance Ls = 0.00252"Stator Leakage Inductance";

 

parameter Inductance Lr = 0.00252"Rotor Leakage Inductance";

 

parameter Inductance Lm = 0.00847"Mutual Inductance";

 

parameter Frequency f_N = 50"Rated Frequency of Stator";

 

parameter Voltage u_N = 220"Rated Phase Voltage of Stator";

 

parameter Real p =2"number of pole pairs";

 

parameter Inertia Jm = 0.1"Motor Inertia";

 

parameter Inertia Jl = 0.1"Load Inertia";

 

parameter Real s1=0.5369"frequency rate";

 

parameter Real s2=0.056"stable frequency rate";

 

parameter Real s3=0.4026"another frequency rate";

 

parameter Real P=0.7"stoping rate";

 

 

initial equation

Psi_A = 0;

Psi_B = 0;

Psi_C = 0;

Psi_a = 0;

Psi_b = 0;

Psi_c = 0;

phi = 0;

w = 0;

equation

u_A = Rs * i_A + 1000 * der(Psi_A);

u_B = Rs * i_B + 1000 * der(Psi_B);

u_C = Rs * i_C + 1000 * der(Psi_C);

0 = Rr * i_a + 1000 * der(Psi_a);

0 = Rr * i_b + 1000 * der(Psi_b);

0 = Rr * i_c + 1000 * der(Psi_c)

Psi_A = (Lm+Ls)*i_A + (-0.5*Lm)*i_B + (-0.5*Lm)*i_C + (Lm*cos(phi))*i_a + (Lm*cos(phi+2*Pi/3))*i_b + (Lm*cos(phi-2*Pi/3))*i_c;

Psi_B = (-0.5*Lm)*i_A + (Lm+Ls)*i_B + (-0.5*Lm)*i_C + (Lm*cos(phi-2*Pi/3))*i_a + (Lm*cos(phi))*i_b + (Lm*cos(phi+2*Pi/3))*i_c;

Psi_C = (-0.5*Lm)*i_A + (-0.5*Lm)*i_B + (Lm+Ls)*i_C + (Lm*cos(phi+2*Pi/3))*i_a + (Lm*cos(phi-2*Pi/3))*i_b + (Lm*cos(phi))*i_c;

Psi_a = (Lm*cos(phi))*i_A + (Lm*cos(phi-2*Pi/3))*i_B + (Lm*cos(phi+2*Pi/3))*i_C + (Lm+Lr)*i_a + (-0.5*Lm)*i_b + (-0.5*Lm)*i_c;

Psi_b = (Lm*cos(phi+2*Pi/3))*i_A + (Lm*cos(phi))*i_B + (Lm*cos(phi-2*Pi/3))*i_C + (-0.5*Lm)*i_a + (Lm+Lr)*i_b + (-0.5*Lm)*i_c;

Psi_c = (Lm*cos(phi-2*Pi/3))*i_A + (Lm*cos(phi+2*Pi/3))*i_B + (Lm*cos(phi))*i_C + (-0.5*Lm)*i_a + (-0.5*Lm)*i_b + (Lm+Lr)*i_c;

Tm=-p*Lm*((i_A*i_a+i_B*i_b+i_C*i_c)*sin(phi)+(i_A*i_b+i_B*i_c+i_C*i_a)*sin(phi+2*Pi/3)+(i_A*i_c+i_B*i_a+i_C*i_b)*sin(phi-2*Pi/3));

w = 1000 * der(phi_m);

phi_m = phi/p;

n= w*60/(2*Pi);

Tm-Tl = (Jm+Jl) * 1000 * der(w);

Tl = 10;

if time <= 100 then

f_s = 0;

Rs = 0.531;

u_A = 0;

u_B = 0;

u_C = 0;

elseif time<=810 then

f_s = f_N*s1;

Rs = 0.531;

u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*s1;

u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*s1;

u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*s1;

elseif time<=815 then

f_s = f_N*s1;

Rs = 8;

u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*s1;

u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*s1;

u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*s1;

elseif time<=970 then

f_s = f_N*s1;

Rs = 0.6;

u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*s1;

u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*s1;

u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*s1;

elseif time<=1000then

f_s = f_N*s1;

Rs = 0.531;

u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*s1;

u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*s1;

u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*s1;

elseif time<=1500 then

f_s = f_N*s2;

Rs = 0.531;

u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*s2;

u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*s2;

u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*s2;

elseif time<=1515 then

f_s = f_N*s3;

Rs = 5;

u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*s3;

u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*s3;

u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*s3;

elseif time<=2220 then

f_s = f_N*s3;

Rs = 0.531;

u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*s3;

u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*s3;

u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*s3;

elseif time<=2250 then

f_s = f_N*P*s1;

Rs = 3.5;

u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*s1*P;

u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*s1*P;

u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*s1*P;

elseif time<=2410 then

f_s = f_N*s1;

Rs = 0.531;

u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*s1;

u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*s1;

u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*s1;

else

u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*s2;

u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*s2;

u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*s2;

f_s = f_N*s2;

Rs = 0.531;

end if;

end SACIM;

 

 



100-300ms加速

300-800ms恒速800r/min

800-1000ms减速

1000-1500ms保持静止

1500-1650ms加速下降

1650-2250ms恒速600r/min

2250-2410ms减速到静止

 

总用时2410ms
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: