您的位置:首页 > 职场人生

黑马程序员——Java重点基础之多线程(二)

2015-12-08 15:15 573 查看
------Java培训、Android培训、iOS培训、.Net培训、期待与您交流! -------

一,单例设计模式

单例设计模式:保证类在内存中只有一个对象。

如何保证类在内存中只有一个对象呢?

(1)控制类的创建,不让其他类来创建本类的对象。private
(2)在本类中定义一个本类的对象。Singleton s;
(3)提供公共的访问方式。 public static Singleton getInstance(){return s}

单例写法两种:

(1)饿汉式 开发用这种方式。
//饿汉式
class Singleton {
//1,私有构造函数
private Singleton(){}
//2,创建本类对象
private static Singleton s = new Singleton();
//3,对外提供公共的访问方法
public static Singleton getInstance() {
return s;
}

public static void print() {
System.out.println("11111111111");
}
}


(2)懒汉式 面试写这种方式。多线程的问题?

//懒汉式,单例的延迟加载模式
class Singleton {
//1,私有构造函数
private Singleton(){}
//2,声明一个本类的引用
private static Singleton s;
//3,对外提供公共的访问方法
public static Singleton getInstance() {
if(s == null)
//线程1,线程2
s = new Singleton();
return s;
}

public static void print() {
System.out.println("11111111111");
}
}


(3)第三种格式
class Singleton {
private Singleton() {}

public static final Singleton s = new Singleton();//final是最终的意思,被final修饰的变量不可以被更改
}


二,Runtime类

Runtime类是一个单例类

Runtime r = Runtime.getRuntime();
//r.exec("shutdown -s -t 300");     //300秒后关机
r.exec("shutdown -a");              //取消关机


三,Timer

Timer类:计时器

public class Demo5_Timer {
/**
* @param args
* 计时器
* @throws InterruptedException
*/
public static void main(String[] args) throws InterruptedException {
Timer t = new Timer();
t.schedule(new MyTimerTask(), new Date(114,9,15,10,54,20),3000);

while(true) {
System.out.println(new Date());
Thread.sleep(1000);
}
}
}
class MyTimerTask extends TimerTask {
@Override
public void run() {
System.out.println("起床背英语单词");
}

}


四,两个线程间的通信

1.什么时候需要通信

多个线程并发执行时, 在默认情况下CPU是随机切换线程的
如果我们希望他们有规律的执行, 就可以使用通信, 例如每个线程执行一次打印

2.怎么通信

如果希望线程等待, 就调用wait()
如果希望唤醒等待的线程, 就调用notify();
这两个方法必须在同步代码中执行, 并且使用同步锁对象来调用

五,三个或三个以上间的线程通信

多个线程通信的问题

notify()方法是随机唤醒一个线程
notifyAll()方法是唤醒所有线程
JDK5之前无法唤醒指定的一个线程
如果多个线程之间通信, 需要使用notifyAll()通知所有线程, 用while来反复判断条件

六,JDK1.5的新特性互斥锁

1.同步

使用ReentrantLock类的lock()和unlock()方法进行同步

2.通信

使用ReentrantLock类的newCondition()方法可以获取Condition对象
需要等待的时候使用Condition的await()方法, 唤醒的时候用signal()方法
不同的线程使用不同的Condition, 这样就能区分唤醒的时候找哪个线程了

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;

public class Demo3_ReentrantLock {

/**
* @param args
*/
public static void main(String[] args) {
final Printer3 p = new Printer3();

new Thread() {
public void run() {
while(true) {
try {
p.print1();
} catch (InterruptedException e) {

e.printStackTrace();
}
}
}
}.start();

new Thread() {
public void run() {
while(true) {
try {
p.print2();
} catch (InterruptedException e) {

e.printStackTrace();
}
}
}
}.start();

new Thread() {
public void run() {
while(true) {
try {
p.print3();
} catch (InterruptedException e) {

e.printStackTrace();
}
}
}
}.start();
}

}

class Printer3 {
private ReentrantLock r = new ReentrantLock();
private Condition c1 = r.newCondition();
private Condition c2 = r.newCondition();
private Condition c3 = r.newCondition();

private int flag = 1;
public void print1() throws InterruptedException {
r.lock();								//获取锁
if(flag != 1) {
c1.await();
}
System.out.print("黑");
System.out.print("马");
System.out.print("程");
System.out.print("序");
System.out.print("员");
System.out.print("\r\n");
flag = 2;
//this.notify();						//随机唤醒单个等待的线程
c2.signal();
r.unlock();								//释放锁
}

public void print2() throws InterruptedException {
r.lock();
if(flag != 2) {
c2.await();
}
System.out.print("传");
System.out.print("智");
System.out.print("播");
System.out.print("客");
System.out.print("\r\n");
flag = 3;
//this.notify();
c3.signal();
r.unlock();
}

public void print3() throws InterruptedException {
r.lock();
if(flag != 3) {
c3.await();
}
System.out.print("i");
System.out.print("t");
System.out.print("h");
System.out.print("e");
System.out.print("i");
System.out.print("m");
System.out.print("a");
System.out.print("\r\n");
flag = 1;
c1.signal();
r.unlock();
}
}


七,线程组的概述和使用

A:线程组概述

Java中使用ThreadGroup来表示线程组,它可以对一批线程进行分类管理,Java允许程序直接对线程组进行控制。
默认情况下,所有的线程都属于主线程组。

public final ThreadGroup getThreadGroup()//通过线程对象获取他所属于的组
public final String getName()//通过线程组对象获取他组的名字

我们也可以给线程设置分组

1,ThreadGroup(String name) 创建线程组对象并给其赋值名字
2,创建线程对象
3,Thread(ThreadGroup?group, Runnable?target, String?name)
4,设置整组的优先级或者守护线程

B:案例演示

线程组的使用,默认是主线程组

MyRunnable mr = new MyRunnable();
Thread t1 = new Thread(mr, "张三");
Thread t2 = new Thread(mr, "李四");
//获取线程组
// 线程类里面的方法:public final ThreadGroup getThreadGroup()
ThreadGroup tg1 = t1.getThreadGroup();
ThreadGroup tg2 = t2.getThreadGroup();
// 线程组里面的方法:public final String getName()
String name1 = tg1.getName();
String name2 = tg2.getName();
System.out.println(name1);
System.out.println(name2);
// 通过结果我们知道了:线程默认情况下属于main线程组
// 通过下面的测试,你应该能够看到,默任情况下,所有的线程都属于同一个组
System.out.println(Thread.currentThread().getThreadGroup().getName());


自己设定线程组

// ThreadGroup(String name)
ThreadGroup tg = new ThreadGroup("这是一个新的组");

MyRunnable mr = new MyRunnable();
// Thread(ThreadGroup group, Runnable target, String name)
Thread t1 = new Thread(tg, mr, "张三");
Thread t2 = new Thread(tg, mr, "李四");

System.out.println(t1.getThreadGroup().getName());
System.out.println(t2.getThreadGroup().getName());

//通过组名称设置后台线程,表示该组的线程都是后台线程
tg.setDaemon(true);


八,线程的五种状态

看图说话
新建,就绪,运行,阻塞,死亡



九,线程池的概述和使用

A:线程池概述

程序启动一个新线程成本是比较高的,因为它涉及到要与操作系统进行交互。而使用线程池可以很好的提高性能,尤其是当程序中要创建大量生存期很短的线程时,更应该考虑使用线程池。线程池里的每一个线程代码结束后,并不会死亡,而是再次回到线程池中成为空闲状态,等待下一个对象来使用。在JDK5之前,我们必须手动实现自己的线程池,从JDK5开始,Java内置支持线程池

B:内置线程池的使用概述

JDK5新增了一个Executors工厂类来产生线程池,有如下几个方法

public static ExecutorService newFixedThreadPool(int nThreads)
public static ExecutorService newSingleThreadExecutor()
这些方法的返回值是ExecutorService对象,该对象表示一个线程池,可以执行Runnable对象或者Callable对象代表的线程。它提供了如下方法
Future<?> submit(Runnable task)
Future submit(Callable task)

使用步骤:

创建线程池对象
创建Runnable实例
提交Runnable实例
关闭线程池

C:案例演示

提交的是Runnable
// public static ExecutorService newFixedThreadPool(int nThreads)
ExecutorService pool = Executors.newFixedThreadPool(2);

// 可以执行Runnable对象或者Callable对象代表的线程
pool.submit(new MyRunnable());
pool.submit(new MyRunnable());

//结束线程池
pool.shutdown();


十,多线程程序实现的方式3

提交的是Callable

// 创建线程池对象
ExecutorService pool = Executors.newFixedThreadPool(2);

// 可以执行Runnable对象或者Callable对象代表的线程
Future<Integer> f1 = pool.submit(new MyCallable(100));
Future<Integer> f2 = pool.submit(new MyCallable(200));

// V get()
Integer i1 = f1.get();
Integer i2 = f2.get();

System.out.println(i1);
System.out.println(i2);

// 结束
pool.shutdown();

public class MyCallable implements Callable<Integer> {

private int number;

public MyCallable(int number) {
this.number = number;
}

@Override
public Integer call() throws Exception {
int sum = 0;
for (int x = 1; x <= number; x++) {
sum += x;
}
return sum;
}

}


多线程程序实现的方式3的好处和弊端

好处:

可以有返回值
可以抛出异常

弊端:

代码比较复杂,所以一般不用

十一,简单工厂模式概述和使用

A:简单工厂模式概述

又叫静态工厂方法模式,它定义一个具体的工厂类负责创建一些类的实例

B:优点

客户端不需要在负责对象的创建,从而明确了各个类的职责

C:缺点

这个静态工厂类负责所有对象的创建,如果有新的对象增加,或者某些对象的创建方式不同,就需要不断的修改工厂类,不利于后期的维护

D:案例演示

动物抽象类:public abstract Animal { public abstract void eat(); }
具体狗类:public class Dog extends Animal {}
具体猫类:public class Cat extends Animal {}
开始,在测试类中每个具体的内容自己创建对象,但是,创建对象的工作如果比较麻烦,就需要有人专门做这个事情,所以就知道了一个专门的类来创建对象。

public class AnimalFactory {
private AnimalFactory(){}

//public static Dog createDog() {return new Dog();}
//public static Cat createCat() {return new Cat();}

//改进
public static Animal createAnimal(String animalName) {
if(“dog”.equals(animalName)) {}
else if(“cat”.equals(animale)) {

}else {
return null;
}
}
}


十二,工厂方法模式的概述和使用

A:工厂方法模式概述

工厂方法模式中抽象工厂类负责定义创建对象的接口,具体对象的创建工作由继承抽象工厂的具体类实现。

B:优点

客户端不需要在负责对象的创建,从而明确了各个类的职责,如果有新的对象增加,只需要增加一个具体的类和具体的工厂类即可,不影响已有的代码,后期维护容易,增强了系统的扩展性

C:缺点

需要额外的编写代码,增加了工作量

D:案例演示
动物抽象类:public abstract Animal { public abstract void eat(); }
工厂接口:public interface Factory {public abstract Animal createAnimal();}
具体狗类:public class Dog extends Animal {}
具体猫类:public class Cat extends Animal {}
开始,在测试类中每个具体的内容自己创建对象,但是,创建对象的工作如果比较麻烦,就需要有人专门做这个事情,所以就知道了一个专门的类来创建对象。发现每次修改代码太麻烦,用工厂方法改进,针对每一个具体的实现提供一个具体工厂。
狗工厂:public class DogFactory implements Factory {
public Animal createAnimal() {…}
}
猫工厂:public class CatFactory implements Factory {
public Animal createAnimal() {…}
}


十三,GUI(布局管理器)

FlowLayout(流式布局管理器)

从左到右的顺序排列。
Panel默认的布局管理器。

BorderLayout(边界布局管理器)

东,南,西,北,中
Frame默认的布局管理器。

GridLayout(网格布局管理器)

规则的矩阵

CardLayout(卡片布局管理器)

选项卡

GridBagLayout(网格包布局管理器)

非规则的矩阵

十四,GUI(窗体监听)

Frame f = new Frame("我的窗体");
//事件源是窗体,把监听器注册到事件源上
//事件对象传递给监听器
f.addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {
//退出虚拟机,关闭窗口
System.exit(0);
}
});


十五,GUI(鼠标监听)

十六,GUI(键盘监听和键盘事件)

十七,GUI(动作监听)

十八,设计模式(适配器设计模式)(掌握)

a.什么是适配器

在使用监听器的时候, 需要定义一个类事件监听器接口.
通常接口中有多个方法, 而程序中不一定所有的都用到, 但又必须重写, 这很繁琐.
适配器简化了这些操作, 我们定义监听器时只要继承适配器, 然后重写需要的方法即可.

b.适配器原理

适配器就是一个类, 实现了监听器接口, 所有抽象方法都重写了, 但是方法全是空的.
适配器类需要定义成抽象的,因为创建该类对象,调用空方法是没有意义的
目的就是为了简化程序员的操作, 定义监听器时继承适配器, 只重写需要的方法就可以了.

十九,GUI(需要知道的)

事件处理

事件: 用户的一个操作
事件源: 被操作的组件
监听器: 一个自定义类的对象, 实现了监听器接口, 包含事件处理方法,把监听器添加在事件源上, 当事件发生的时候虚拟机就会自动调用监听器中的事件处理方法
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: