您的位置:首页 > 移动开发 > Android开发

Android图片高斯模糊的一些方法

2015-11-23 19:49 543 查看

高斯模糊

高斯模糊就是将指定像素变换为其与周边像素加权平均后的值,权重就是高斯分布函数计算出来的值。

一种实现

点击打开链接<-这里是一片关于高斯模糊算法的介绍,我们需要首先根据高斯分布函数计算权重值,为了提高效率我们采用一维高斯分布函数,然后处理图像的时候在横向和纵向进行两次计算得到结果。下面是一种实现

[java]
view plaincopyprint?

public static void gaussBlur(int[] data, int width, int height, int radius,
float sigma) {

float pa = (float) (1 / (Math.sqrt(2 * Math.PI) * sigma));
float pb = -1.0f / (2 * sigma * sigma);

// generate the Gauss Matrix
float[] gaussMatrix = new float[radius * 2 + 1];
float gaussSum = 0f;
for (int i = 0, x = -radius; x <= radius; ++x, ++i) {
float g = (float) (pa * Math.exp(pb * x * x));
gaussMatrix[i] = g;
gaussSum += g;
}

for (int i = 0, length = gaussMatrix.length; i < length; ++i) {
gaussMatrix[i] /= gaussSum;
}

// x direction
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
float r = 0, g = 0, b = 0;
gaussSum = 0;
for (int j = -radius; j <= radius; ++j) {
int k = x + j;
if (k >= 0 && k < width) {
int index = y * width + k;
int color = data[index];
int cr = (color & 0x00ff0000) >> 16;
int cg = (color & 0x0000ff00) >> 8;
int cb = (color & 0x000000ff);

r += cr * gaussMatrix[j + radius];
g += cg * gaussMatrix[j + radius];
b += cb * gaussMatrix[j + radius];

gaussSum += gaussMatrix[j + radius];
}
}

int index = y * width + x;
int cr = (int) (r / gaussSum);
int cg = (int) (g / gaussSum);
int cb = (int) (b / gaussSum);

data[index] = cr << 16 | cg << 8 | cb | 0xff000000;
}
}

// y direction
for (int x = 0; x < width; ++x) {
for (int y = 0; y < height; ++y) {
float r = 0, g = 0, b = 0;
gaussSum = 0;
for (int j = -radius; j <= radius; ++j) {
int k = y + j;
if (k >= 0 && k < height) {
int index = k * width + x;
int color = data[index];
int cr = (color & 0x00ff0000) >> 16;
int cg = (color & 0x0000ff00) >> 8;
int cb = (color & 0x000000ff);

r += cr * gaussMatrix[j + radius];
g += cg * gaussMatrix[j + radius];
b += cb * gaussMatrix[j + radius];

gaussSum += gaussMatrix[j + radius];
}
}

int index = y * width + x;
int cr = (int) (r / gaussSum);
int cg = (int) (g / gaussSum);
int cb = (int) (b / gaussSum);
data[index] = cr << 16 | cg << 8 | cb | 0xff000000;
}
}
}

实际测试会发现这种计算方式是很耗时间的,而且模糊半径越大,从原理也可以看到计算量是平方增长的,所以计算时间也越长。

RenderScript

RenderScript是Android在API 11之后加入的,用于高效的图片处理,包括模糊、混合、矩阵卷积计算等,代码示例如下

[java]
view plaincopyprint?

public Bitmap blurBitmap(Bitmap bitmap){

//Let's create an empty bitmap with the same size of the bitmap we want to blur
Bitmap outBitmap = Bitmap.createBitmap(bitmap.getWidth(), bitmap.getHeight(), Config.ARGB_8888);

//Instantiate a new Renderscript
RenderScript rs = RenderScript.create(getApplicationContext());

//Create an Intrinsic Blur Script using the Renderscript
ScriptIntrinsicBlur blurScript = ScriptIntrinsicBlur.create(rs, Element.U8_4(rs));

//Create the Allocations (in/out) with the Renderscript and the in/out bitmaps
Allocation allIn = Allocation.createFromBitmap(rs, bitmap);
Allocation allOut = Allocation.createFromBitmap(rs, outBitmap);

//Set the radius of the blur
blurScript.setRadius(25.f);

//Perform the Renderscript
blurScript.setInput(allIn);
blurScript.forEach(allOut);

//Copy the final bitmap created by the out Allocation to the outBitmap
allOut.copyTo(outBitmap);

//recycle the original bitmap
bitmap.recycle();

//After finishing everything, we destroy the Renderscript.
rs.destroy();

return outBitmap;

}

(示例来源 https://gist.github.com/Mariuxtheone/903c35b4927c0df18cf8)

FastBlur

[java]
view plaincopyprint?

public class FastBlur {

public static Bitmap doBlur(Bitmap sentBitmap, int radius, boolean canReuseInBitmap) {

// Stack Blur v1.0 from
// http://www.quasimondo.com/StackBlurForCanvas/StackBlurDemo.html //
// Java Author: Mario Klingemann <mario at quasimondo.com>
// http://incubator.quasimondo.com // created Feburary 29, 2004
// Android port : Yahel Bouaziz <yahel at kayenko.com>
// http://www.kayenko.com // ported april 5th, 2012

// This is a compromise between Gaussian Blur and Box blur
// It creates much better looking blurs than Box Blur, but is
// 7x faster than my Gaussian Blur implementation.
//
// I called it Stack Blur because this describes best how this
// filter works internally: it creates a kind of moving stack
// of colors whilst scanning through the image. Thereby it
// just has to add one new block of color to the right side
// of the stack and remove the leftmost color. The remaining
// colors on the topmost layer of the stack are either added on
// or reduced by one, depending on if they are on the right or
// on the left side of the stack.
//
// If you are using this algorithm in your code please add
// the following line:
//
// Stack Blur Algorithm by Mario Klingemann <mario@quasimondo.com>

Bitmap bitmap;
if (canReuseInBitmap) {
bitmap = sentBitmap;
} else {
bitmap = sentBitmap.copy(sentBitmap.getConfig(), true);
}

if (radius < 1) {
return (null);
}

int w = bitmap.getWidth();
int h = bitmap.getHeight();

int[] pix = new int[w * h];
bitmap.getPixels(pix, 0, w, 0, 0, w, h);

int wm = w - 1;
int hm = h - 1;
int wh = w * h;
int div = radius + radius + 1;

int r[] = new int[wh];
int g[] = new int[wh];
int b[] = new int[wh];
int rsum, gsum, bsum, x, y, i, p, yp, yi, yw;
int vmin[] = new int[Math.max(w, h)];

int divsum = (div + 1) >> 1;
divsum *= divsum;
int dv[] = new int[256 * divsum];
for (i = 0; i < 256 * divsum; i++) {
dv[i] = (i / divsum);
}

yw = yi = 0;

int[][] stack = new int[div][3];
int stackpointer;
int stackstart;
int[] sir;
int rbs;
int r1 = radius + 1;
int routsum, goutsum, boutsum;
int rinsum, ginsum, binsum;

for (y = 0; y < h; y++) {
rinsum = ginsum = binsum = routsum = goutsum = boutsum = rsum = gsum = bsum = 0;
for (i = -radius; i <= radius; i++) {
p = pix[yi + Math.min(wm, Math.max(i, 0))];
sir = stack[i + radius];
sir[0] = (p & 0xff0000) >> 16;
sir[1] = (p & 0x00ff00) >> 8;
sir[2] = (p & 0x0000ff);
rbs = r1 - Math.abs(i);
rsum += sir[0] * rbs;
gsum += sir[1] * rbs;
bsum += sir[2] * rbs;
if (i > 0) {
rinsum += sir[0];
ginsum += sir[1];
binsum += sir[2];
} else {
routsum += sir[0];
goutsum += sir[1];
boutsum += sir[2];
}
}
stackpointer = radius;

for (x = 0; x < w; x++) {

r[yi] = dv[rsum];
g[yi] = dv[gsum];
b[yi] = dv[bsum];

rsum -= routsum;
gsum -= goutsum;
bsum -= boutsum;

stackstart = stackpointer - radius + div;
sir = stack[stackstart % div];

routsum -= sir[0];
goutsum -= sir[1];
boutsum -= sir[2];

if (y == 0) {
vmin[x] = Math.min(x + radius + 1, wm);
}
p = pix[yw + vmin[x]];

sir[0] = (p & 0xff0000) >> 16;
sir[1] = (p & 0x00ff00) >> 8;
sir[2] = (p & 0x0000ff);

rinsum += sir[0];
ginsum += sir[1];
binsum += sir[2];

rsum += rinsum;
gsum += ginsum;
bsum += binsum;

stackpointer = (stackpointer + 1) % div;
sir = stack[(stackpointer) % div];

routsum += sir[0];
goutsum += sir[1];
boutsum += sir[2];

rinsum -= sir[0];
ginsum -= sir[1];
binsum -= sir[2];

yi++;
}
yw += w;
}
for (x = 0; x < w; x++) {
rinsum = ginsum = binsum = routsum = goutsum = boutsum = rsum = gsum = bsum = 0;
yp = -radius * w;
for (i = -radius; i <= radius; i++) {
yi = Math.max(0, yp) + x;

sir = stack[i + radius];

sir[0] = r[yi];
sir[1] = g[yi];
sir[2] = b[yi];

rbs = r1 - Math.abs(i);

rsum += r[yi] * rbs;
gsum += g[yi] * rbs;
bsum += b[yi] * rbs;

if (i > 0) {
rinsum += sir[0];
ginsum += sir[1];
binsum += sir[2];
} else {
routsum += sir[0];
goutsum += sir[1];
boutsum += sir[2];
}

if (i < hm) {
yp += w;
}
}
yi = x;
stackpointer = radius;
for (y = 0; y < h; y++) {
// Preserve alpha channel: ( 0xff000000 & pix[yi] )
pix[yi] = (0xff000000 & pix[yi]) | (dv[rsum] << 16) | (dv[gsum] << 8) | dv[bsum];

rsum -= routsum;
gsum -= goutsum;
bsum -= boutsum;

stackstart = stackpointer - radius + div;
sir = stack[stackstart % div];

routsum -= sir[0];
goutsum -= sir[1];
boutsum -= sir[2];

if (x == 0) {
vmin[y] = Math.min(y + r1, hm) * w;
}
p = x + vmin[y];

sir[0] = r[p];
sir[1] = g[p];
sir[2] = b[p];

rinsum += sir[0];
ginsum += sir[1];
binsum += sir[2];

rsum += rinsum;
gsum += ginsum;
bsum += binsum;

stackpointer = (stackpointer + 1) % div;
sir = stack[stackpointer];

routsum += sir[0];
goutsum += sir[1];
boutsum += sir[2];

rinsum -= sir[0];
ginsum -= sir[1];
binsum -= sir[2];

yi += w;
}
}

bitmap.setPixels(pix, 0, w, 0, 0, w, h);

return (bitmap);
}

这里的方法也可以实现高斯模糊的效果,但使用了特殊的算法,比第一种可以快很多,但比起RenderScript还是慢一些

(示例来源
Android高级模糊技术)

实现YAHOO天气的动态模糊效果

  YAHOO天气中的背景会随着手指上滑模糊程度加深,实际使用中发现怎么都达不到那样流畅的效果,因为手势刷新的速度很快,每一帧都去重新模糊计算一遍,还是会有延迟,造成页面卡顿。后来在一次偶然的开发中发现其实不需要每一帧都重新去模糊一遍,而是将图片最大程度模糊一次,之后和原图叠加,通过改变叠加的模糊图片的alpha值来达到不同程度的模糊效果。下面是一个例子,可以看到随着模糊图片alpha值的变化,叠加后产生不同程度的模糊效果。



随滑动变换alpha值的代码如下

[java]
view plaincopyprint?

mBlurImage.setOnTouchListener(new OnTouchListener() {

private float mLastY;

@Override
public boolean onTouch(View v, MotionEvent event) {
switch (event.getAction()) {
case MotionEvent.ACTION_DOWN:
mLastY = event.getY();
break;
case MotionEvent.ACTION_MOVE:
float y = event.getY();
float alphaDelt = (y - mLastY) / 1000;
float alpha = mBlurImage.getAlpha() + alphaDelt;
if (alpha > 1.0) {
alpha = 1.0f;
} else if (alpha < 0.0) {
alpha = 0.0f;
}
mTextView.setText(String.valueOf(alpha));
mBlurImage.setAlpha(alpha);
break;
case MotionEvent.ACTION_UP:
break;
}
return true;
}
});
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: