您的位置:首页 > 运维架构 > 网站架构

gsensor架构和原理分析

2015-08-28 17:38 477 查看
本文主要描述了在android2.3平台G-sensor相关软硬件的体系架构和实现原理,按照Applications、Framework、HAL、Driver和Hardware五大层次分别介绍。


1.系统架构 (Architecture)


1.1 Android体系架构图




1.2 Sensor子系统架构图



· Application Framework

Sensor应用程序通过Sensor应用框架来获取sensor数据,应用框架层的Sensor
Manager通过JNI与C++层进行通信。

· Sensor Libraries

Sensor中间层主要由Sensor Manager、Sensor service和Sensor硬件抽象层组成。

· Input Subsystem

通用的Linux输入框架专为与键盘、鼠标和触摸屏等输入设备而设计,并定义了一套标准事件集合。Sensor输入子系统采用采用了通用的Linux输入框架,它通过/sys/class/input节点和用户空间进行交互。

· Event Dev

Evdev提供了一种访问/dev/input/eventX输入设备事件的通用方法。

· AccelerometerDriver

此驱动通过SIRQ和I2C总线与MMA7660模组进行通信。SIRQ用来产生传感器事件中断。



2 应用 (Applications)


2.1 应用开发五步曲

(1) 获取传感器管理器对象;

mSensorManager =(SensorManager) getSystemService(SENSOR_SERVICE);

(2) 获取传感器对象;

mSensor = mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);

(3) 定义事件监听器;

mEventListener =new SensorEventListener() {

[java] view
plaincopy

@Override

publicvoid onSensorChanged(SensorEvent event) {

float[] values = event.values;

mTextView.setText("Accelerometer:" + values[0] +", "

+ values[1] +", " + values[2]);

}



@Override

publicvoidonAccuracyChanged(Sensor sensor,int accuracy) {

}

(4) 注册事件监听器;

protectedvoid onResume() {

[java] view
plaincopy

super.onResume();



mSensorManager.registerListener(mEventListener, mSensor,

SensorManager.SENSOR_DELAY_NORMAL);

(5) 卸载事件监听器;

protectedvoid onPause() {

[java] view
plaincopy

super.onPause();



mSensorManager.unregisterListener(mEventListener);

3 框架 (Framework)


3.1 工作模型




3.1.1 SensorManager的创建



nativeClassInit(): 初始化Native类信息;

sensors_module_init(): 创建Native SensorManager实例,从SensorService读取Sensor设备列表;

sensors_module_get_next_sensor(): 从SensorService读取下一个Sensor设备;

3.1.2 SensorThread数据接收处理



sensors_create_queue(): 创建和SensorService共享的消息队列;

sensors_data_poll(): 从消息队列中读取SensorService发过来的消息;

3.1.3 SensorService的工作原理



SensorDevice::poll(): 调用HAL接口读取数据;

SensorEventConnection::sendEvents(): 往消息队列中写入消息,SensorThread后续会读取该消息;

3.1.4 SensorDevice对HAL的访问




4 硬件抽象层 (HAL)



在linux操作系统中,应用同硬件之间的交互都是通过设备驱动来实现,Android系统为了降低应用开发人员开发难度,屏蔽硬件差异,定义出硬件抽象层,为开发人员提供获取各种设备相关的信息的接口。


4.1 Sensors HAL关键流程


4.1.1 打开Sensor设备



SensorBase ::openInput() : 打开input子系统的sensor消息文件句柄;

ioctl(EVIOCGABS(...)) : 获取ABS_X/ABS_Y/ABS_Z的加速度;

4.1.2 轮循Sensor事件



InputEventCircularReader::fill(): 调用read()从input子系统中读取事件放入环形缓冲区;

InputEventCircularReader::readEvent(): 从环形缓冲区中读取事件;

InputEventCircularReader::next(): 移动环形缓冲区当前指针;

5.2 Sensors HAL关键数据结构


5.2.1 sensors_module_t

[cpp] view
plaincopy

struct sensors_module_t {

struct hw_module_t common;



/**

* Enumerate all available sensors. The list is returned in "list".

* @return number of sensors in the list

*/

int (*get_sensors_list)(struct sensors_module_t* module,

struct sensor_t const** list);

};

hw_get_module()会加载HAL模块,并返回HAL入口数据结构(hw_module_t)。HAL_MODULE_INFO_SYM默认是“HAL”,在hw_get_module中用dlsym获取。

[cpp] view
plaincopy

const struct sensors_module_t HAL_MODULE_INFO_SYM = {

.common = {

.tag = HARDWARE_MODULE_TAG,

.version_major = 1,

.version_minor = 0,

.id = SENSORS_HARDWARE_MODULE_ID,

.name = "MMA7660 Sensors Module",

.author = "The Android Open Source Project",

.methods = &sensors_module_methods,

},

.get_sensors_list = sensors__get_sensors_list

};

5.2.2 hw_module_methods_t

static struct hw_module_methods_t sensors_module_methods = {

[cpp] view
plaincopy

.open = open_sensors

5.2.3 sensors_poll_context_t

[cpp] view
plaincopy

struct sensors_poll_context_t {

struct sensors_poll_device_t device; // must be first

sensors_poll_context_t();

~sensors_poll_context_t();

int activate(int handle, int enabled);

int setDelay(int handle, int64_t ns);

int pollEvents(sensors_event_t* data, int count);

int handleToDriver(int handle);

};

5.2.4 sensors_poll_device_t

[cpp] view
plaincopy

struct sensors_poll_device_t {

struct hw_device_t common;



int (*activate)(struct sensors_poll_device_t *dev,

int handle, int enabled);



int (*setDelay)(struct sensors_poll_device_t *dev,

int handle, int64_t ns);



int (*poll)(struct sensors_poll_device_t *dev,

sensors_event_t* data, int count);

};

5.2.5 sensor_t
定义传感器的基本参数。

[cpp] view
plaincopy

static const struct sensor_t sSensorList[] = {

{ "MMA7660 3-axis Accelerometer",

"Freescale Semiconductor",

1, SENSORS_HANDLE_BASE+ID_A,

SENSOR_TYPE_ACCELEROMETER, 3.0f*9.81f, (3.0f*9.81f)/64.0f, 0.35f, 0, { } },

};

[cpp] view
plaincopy

struct sensor_t {

const char* name;

const char* vendor;

int version;

int handle;

int type;

float maxRange;

float resolution;

float power;

int32_t minDelay;

void* reserved[8];

};

6 驱动 (driver)


6.1 mma7660驱动框架



mma7660与主机通信是通过I2C接口,因此mma7660驱动程序采用Linux系统的I2C子系统框架来实现,主要由3部分组成:



(1) I2C核心

I2C核心提供了I2C总线驱动和设备驱动的注册、注销方法,I2C通信方法(即“algorithm”)上层的、与具体适配器无关的代码以及探测设备、检测设备地址的上层代码等。这部分是与平台无关的。

此部分在Linux内核的I2C驱动中实现,mma7660驱动使用其提供的功能接口来注册设备驱动。

(2) I2C总线驱动

I2C总线驱动是对I2C硬件体系结构中适配器端的实现。I2C总线驱动主要包含了I2C适配器数据结构i2c_adapter、I2C适配器的algorithm数据结构i2c_algorithm和控制I2C适配器产生通信信号的函数。经由I2C总线驱动的代码,我们可以控制I2C适配器以主控方式产生开始位、停止位、读写周期,以及以从设备方式被读写、产生ACK等。不同的CPU平台对应着不同的I2C总线驱动。

此部分在Linux内核的I2C驱动中实现,mma7660驱动直接获取其提供的adapter,并调用I2C核心的接口来注册。

(3) I2C设备驱动

I2C设备驱动是对I2C硬件体系结构中设备端的实现。设备一般挂接在受CPU控制的I2C适配器上,通过I2C适配器与CPU交换数据。I2C设备驱动主要包含了数据结构i2c_driver和i2c_client,mma7660驱动需要实现其中的成员函数。

在Linux内核源代码中的drivers目录下的i2c_dev.c文件,实现了I2C适配器设备文件的功能,应用程序通过“i2c-%d”文件名并使用文件操作接口open()、write()、read()、ioctl()和close()等来访问这个设备。应用层可以借用这些接口访问挂接在适配器上的I2C设备的存储空间或寄存器并控制I2C设备的工作方式。

6.2 mma7660操作流程

6.2.1 初始化





6.2.2 探测设备



6.2.3 移除设备



6.2.4 采集数据



6.2.5 睡眠和唤醒

Suspend处理:关闭mma7660模组;

Resume处理:使能mma7660模组;



[cpp] view
plaincopy

static int mma7660_suspend(struct i2c_client *client, pm_message_t mesg)

{

int result;

result = i2c_smbus_write_byte_data(client, MMA7660_MODE,

MK_MMA7660_MODE(0, 0, 0, 0, 0, 0, 0));

assert(result==0);

return result;

}



static int mma7660_resume(struct i2c_client *client)

{

int result;

result = i2c_smbus_write_byte_data(client, MMA7660_MODE,

MK_MMA7660_MODE(0, 1, 0, 0, 0, 0, 1));

assert(result==0);

return result;

}



static struct i2c_driver mma7660_driver = {

.driver = {

.name = MMA7660_DRV_NAME,

.owner = THIS_MODULE,

},

.class = I2C_CLASS_HWMON,

.suspend = mma7660_suspend,

.resume = mma7660_resume,

.probe = mma7660_probe,

.detect = mma7660_detect,

// .address_data = &addr_data,

.remove = __devexit_p(mma7660_remove),

.id_table = mma7660_id,

};

6.3 命令行调试

6.3.1 sysfs调试接口

(1) 定义sysfs attribute相关数据结构;



[cpp] view
plaincopy

static SENSOR_DEVICE_ATTR(all_axis_force, S_IRUGO, show_xyz_force, NULL, 0);

static SENSOR_DEVICE_ATTR(x_axis_force, S_IRUGO, show_axis_force, NULL, 0);

static SENSOR_DEVICE_ATTR(y_axis_force, S_IRUGO, show_axis_force, NULL, 1);

static SENSOR_DEVICE_ATTR(z_axis_force, S_IRUGO, show_axis_force, NULL, 2);

static SENSOR_DEVICE_ATTR(orientation, S_IRUGO, show_orientation, NULL, 0);



static struct attribute* mma7660_attrs[] =

{

&sensor_dev_attr_all_axis_force.dev_attr.attr,

&sensor_dev_attr_x_axis_force.dev_attr.attr,

&sensor_dev_attr_y_axis_force.dev_attr.attr,

&sensor_dev_attr_z_axis_force.dev_attr.attr,

&sensor_dev_attr_orientation.dev_attr.attr,

NULL

};



static const struct attribute_group mma7660_group =

{

.attrs = mma7660_attrs,

};

(2) 在probe函数中创建sysfs文件系统;



[cpp] view
plaincopy

result = sysfs_create_group(&client->dev.kobj, &mma7660_group);

if (result != 0) {

ERR("sysfs_create_group err\n");

goto exit_sysfs_creat_failed;

}

(3) 实现sysfs属性相关的读写函数;

[cpp] view
plaincopy

ssize_t show_orientation(struct device *dev, struct device_attribute *attr, char *buf)

{

int result;

u8 tilt, new_orientation;



mma7660_read_tilt(&tilt);

DBG("tilt [0x%x]\n", tilt);

new_orientation = tilt & 0x1f;

if (orientation!=new_orientation)

orientation = new_orientation;



switch ((orientation>>2)&0x07) {

case 1:

result = sprintf(buf, "Left\n");

break;

case 2:

result = sprintf(buf, "Right\n");

break;

case 5:

result = sprintf(buf, "Downward\n");

break;

case 6:

result = sprintf(buf, "Upward\n");

break;

default:

switch(orientation & 0x03) {

case 1:

result = sprintf(buf, "Front\n");

break;

case 2:

result = sprintf(buf, "Back\n");

break;

default:

result = sprintf(buf, "Unknown\n");

}

}

return result;

}

[cpp] view
plaincopy

ssize_t show_xyz_force(struct device *dev, struct device_attribute *attr, char *buf)

{

int i;

s8 xyz[3];



for (i=0; i<3; i++)

mma7660_read_xyz(i, &xyz[i]);



return sprintf(buf, "(%d,%d,%d)\n", xyz[0], xyz[1], xyz[2]);

}



ssize_t show_axis_force(struct device *dev, struct device_attribute *attr, char *buf)

{

s8 force;

int n = to_sensor_dev_attr(attr)->index;



mma7660_read_xyz(n, &force);



return sprintf(buf, "%d\n", force);

}

6.3.2 Gsensor调试实例

[plain] view
plaincopy

/sys/devices/platform/gl5201-i2c.1/i2c-1/1-004c # ls

uevent

name

modalias

subsystem

power

driver

all_axis_force

x_axis_force

y_axis_force

z_axis_force

orientation

input

/sys/devices/platform/gl5201-i2c.1/i2c-1/1-004c # cat all_axis_force

(-1,0,22)

7 Hardware

7.1 mma7660模组



7.2 关键特性

Sampling Resolution: 6bit
Digital Output (I2C)
3mm x 3mm x 0.9mm DFN Package
Low Power Current Consumption:

Off Mode: 0.4 μA,

Standby Mode: 2 μA,

Active Mode: 47 μA at 1 ODR

Configurable Samples per Second from 1 to 120 samples
Low Voltage Operation:

Analog Voltage: 2.4 V - 3.6 V

Digital Voltage: 1.71 V - 3.6 V

Auto-Wake/Sleep Feature for Low Power Consumption
Tilt Orientation Detection for Portrait/Landscape Capability
Gesture Detection Including Shake Detection and Tap Detection

7.2.1 功能模块图



7.2.2 硬件连接图



7.2.3 运动检测原理

mma7660是一种电容式3轴g-sensor,其技术原理是在wafer的表面做出梳状结构,当产生动作时,由侦测电容差来判断变形量,反推出加速度的值。

简单物理模型如下图:



7.2.4 I2C读写时序



7.2.5 工作状态机



7.2.6 寄存器定义



7.2.7 事件检测



方向和摇动检测



轻拍或倾斜检测


内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: