您的位置:首页 > 理论基础 > 数据结构算法

数据结构(26)二叉树

2015-08-11 15:04 615 查看
既然树已经熟悉了,那我们就来学习学习二叉树吧,二叉树是由n(n>=0)个结点组成的有限集合,该集合或者为空,或者是由一个根结点加上两棵分别称为左子树和右子树的﹑互不相交的二叉树组成。

如图




有两个定义需要大家知道下:

1.满二叉树

如果二叉树中所有分支结点的度数都为2,且叶子结点都在同一层次上,则称这类二叉树为满二叉树。

2.完全二叉树

如果一棵具有n个结点的高度为k的二叉树,它的每一个结点都与高度为k的满二叉树中编号为1-n的结点一一对应,则称这棵二叉树为完全二叉树。(从上到下从左到右编号)

完全二叉树的叶结点仅出现在最下面两层

最下层的叶结点一定出现在左边

倒数第二层的叶结点一定出现在右边

完全二叉树中度为1的结点只有左孩子

同样结点数的二叉树,完全二叉树的高度最小



二叉树所具有的5个性质需要大家掌握:





这里介绍通用树的常用操作:

l 创建二叉树

l 销毁二叉树

l 清空二叉树

l 插入结点到二叉树中

l 删除结点

l 获取某个结点

l 获取根结点

l 获取二叉树的高度

l 获取二叉树的总结点数

l 获取二叉树的度

l 输出二叉树

代码总分为三个文件:

BTree.h : 放置功能函数的声明,以及树的声明,以及树结点的定义

BTree.c : 放置功能函数的定义,以及树的定义

Main.c : 主函数,使用功能函数完成各种需求,一般用作测试

整体结构图为:



这里详细说下插入结点操作,删除结点操作和获取结点操作:



插入结点操作:

如图:




删除结点操作:

如图:



获取结点操作:

获取结点操作和插入删除结点操作中的指路法定位结点相同

OK! 上代码:

BTree.h :

[cpp] view
plaincopy

#ifndef _BTREE_H_

#define _BTREE_H_



#define BT_LEFT 0

#define BT_RIGHT 1



typedef void BTree;

typedef unsigned long long BTPos;



typedef struct _tag_BTreeNode BTreeNode;

struct _tag_BTreeNode

{

BTreeNode* left;

BTreeNode* right;

};



typedef void (BTree_Printf)(BTreeNode*);



BTree* BTree_Create();



void BTree_Destroy(BTree* tree);



void BTree_Clear(BTree* tree);



int BTree_Insert(BTree* tree, BTreeNode* node, BTPos pos, int count, int flag);



BTreeNode* BTree_Delete(BTree* tree, BTPos pos, int count);



BTreeNode* BTree_Get(BTree* tree, BTPos pos, int count);



BTreeNode* BTree_Root(BTree* tree);



int BTree_Height(BTree* tree);



int BTree_Count(BTree* tree);



int BTree_Degree(BTree* tree);



void BTree_Display(BTree* tree, BTree_Printf* pFunc, int gap, char div);



#endif



BTree.c :

[cpp] view
plaincopy

#include <stdio.h>

#include <malloc.h>

#include "BTree.h"



typedef struct _tag_BTree TBTree;

struct _tag_BTree

{

int count;

BTreeNode* root;

};



BTree* BTree_Create()

{

TBTree* ret = (TBTree*)malloc(sizeof(TBTree));



if(NULL != ret)

{

ret->count = 0;

ret->root = NULL;

}



return ret;

}



void BTree_Destroy(BTree* tree)

{

free(tree);

}



void BTree_Clear(BTree* tree)

{

TBTree* btree = (TBTree*)tree;



if(NULL != btree)

{

btree->count = 0;

btree->root = NULL;

}

}



int BTree_Insert(BTree* tree, BTreeNode* node, BTPos pos, int count, int flag)

{

TBTree* btree = (TBTree*)tree;



int ret = (NULL!=btree) && (NULL!=node) && ((flag == BT_RIGHT) || (flag == BT_LEFT));



int bit = 0;



if(ret)

{

BTreeNode* parent = NULL;

BTreeNode* current = btree->root;



node->left = NULL;

node->right = NULL;



while((0 < count) && (NULL != current))

{

bit = pos & 1;

pos = pos >> 1;



parent = current;



if(BT_LEFT == bit)

{

current = current->left;

}

else if(BT_RIGHT == bit)

{

current = current->right;

}



count--;

}



if(BT_LEFT == flag)

{

node->left = current;

}

else if(BT_RIGHT == flag)

{

node->right = current;

}



if(NULL != parent)

{

if(BT_LEFT == bit)

{

parent->left = node;

}

else if(BT_RIGHT == bit)

{

parent->right = node;

}

}

else

{

btree->root = node;

}



btree->count++;

}



return ret;

}



static int recursive_count(BTreeNode* root)

{

int ret = 0;



if(NULL != root)

{

ret = recursive_count(root->left) + 1 +

recursive_count(root->right);

}



return ret;

}



BTreeNode* BTree_Delete(BTree* tree, BTPos pos, int count)

{

TBTree* btree = (TBTree*)tree;



BTreeNode* ret = NULL;



int bit = 0;



if(NULL != btree)

{

BTreeNode* parent = NULL;

BTreeNode* current = btree->root;



while((0 < count) && (NULL != current))

{

bit = pos & 1;

pos = pos >> 1;



parent = current;



if(BT_RIGHT == bit)

{

current = current->right;

}

else if(BT_LEFT == bit)

{

current = current->left;

}



count--;

}



if(NULL != parent)

{

if(BT_LEFT == bit)

{

parent->left = NULL;

}

else if (BT_RIGHT == bit)

{

parent->right = NULL;

}

}

else

{

btree->root = NULL;

}



ret = current;

btree->count = btree->count - recursive_count(ret);

}



return ret;

}





BTreeNode* BTree_Get(BTree* tree, BTPos pos, int count)

{

TBTree* btree = (TBTree*)tree;



BTreeNode* ret = NULL;



int bit = 0;



if(NULL != btree)

{

BTreeNode* current = btree->root;



while((0<count) && (NULL!=current))

{

bit = pos & 1;

pos = pos >> 1;



if(BT_RIGHT == bit)

{

current = current->right;

}

else if(BT_LEFT == bit)

{

current = current->left;

}



count--;

}



ret = current;

}



return ret;

}



BTreeNode* BTree_Root(BTree* tree)

{

TBTree* btree = (TBTree*)tree;



BTreeNode* ret = NULL;



if(NULL != btree)

{

ret = btree->root;

}



return ret;

}



static int recursive_height(BTreeNode* root)

{

int ret = 0;



if(NULL != root)

{

int lh = recursive_height(root->left);

int rh = recursive_height(root->right);



ret = ((lh > rh) ? lh : rh) + 1;

}



return ret;

}



int BTree_Height(BTree* tree)

{

TBTree* btree = (TBTree*)tree;



int ret = -1;



if(NULL != btree)

{

ret = recursive_height(btree->root);

}



return ret;

}



int BTree_Count(BTree* tree)

{

TBTree* btree = (TBTree*)tree;



int ret = -1;



if(NULL != btree)

{

ret = btree->count;

}



return ret;

}



static int recursive_degree(BTreeNode* root)

{

int ret = 0;



if(NULL != root)

{

if(NULL != root->left)

{

ret++;

}

if(NULL != root->right)

{

ret++;

}



if(1 == ret)

{

int ld = recursive_degree(root->left);

int rd = recursive_degree(root->right);



if(ret < ld)

{

ret = ld;

}

if(ret < rd)

{

ret = rd;

}

}

}



return ret;

}



int BTree_Degree(BTree* tree)

{

TBTree* btree = (TBTree*)tree;



int ret = -1;



if(NULL != btree)

{

ret = recursive_degree(btree->root);

}



return ret;

}



static void recursive_display(BTreeNode* node, BTree_Printf* pFunc, int format, int gap, char div)

{

int i = 0;



if((NULL != node) && (NULL != pFunc))

{

for(i=0; i<format; i++)

{

printf("%c", div);

}

pFunc(node);

printf("\n");



if((NULL != node->left) || (NULL != node->right))

{

recursive_display(node->left, pFunc, format+gap, gap, div);

recursive_display(node->right, pFunc, format+gap, gap, div);

}

}

else

{

for(i=0; i<format; i++)

{

printf("%c", div);

}

printf("\n");

}

}



void BTree_Display(BTree* tree, BTree_Printf* pFunc, int gap, char div)

{

TBTree* btree = (TBTree*)tree;



if(NULL != btree)

{

recursive_display(btree->root, pFunc, 0, gap, div);

}

}



Main.c :

[cpp] view
plaincopy

#include <stdio.h>

#include <stdlib.h>

#include "BTree.h"



typedef struct _tag_node

{

BTreeNode header;

char v;

}Node;



void printf_data(BTreeNode* node)

{

if(NULL != node)

{

printf("%c", ((Node*)node)->v);

}

}



int main(void)

{

BTree* tree = BTree_Create();



Node n1 = {{NULL, NULL}, 'A'};

Node n2 = {{NULL, NULL}, 'B'};

Node n3 = {{NULL, NULL}, 'C'};

Node n4 = {{NULL, NULL}, 'D'};

Node n5 = {{NULL, NULL}, 'E'};

Node n6 = {{NULL, NULL}, 'F'};



BTree_Insert(tree, (BTreeNode*)&n1, 0, 0, 0);

BTree_Insert(tree, (BTreeNode*)&n2, 0x00, 1, 0);

BTree_Insert(tree, (BTreeNode*)&n3, 0x01, 1, 0);

BTree_Insert(tree, (BTreeNode*)&n4, 0x00, 2, 0);

BTree_Insert(tree, (BTreeNode*)&n5, 0x02, 2, 0);

BTree_Insert(tree, (BTreeNode*)&n6, 0x02, 3, 0);



printf("Height: %d\n", BTree_Height(tree));

printf("Degree: %d\n", BTree_Degree(tree));

printf("Count : %d\n", BTree_Count(tree));

printf("Position At (0x02, 2): %c \n", ((Node*)BTree_Get(tree, 0x02, 2))->v);



printf("Full Tree:\n");

BTree_Display(tree, printf_data, 4, '-');



BTree_Delete(tree, 0x00, 1);

printf("After Delete B: \n");

printf("Height: %d\n", BTree_Height(tree));

printf("Degree: %d\n", BTree_Degree(tree));

printf("Count : %d\n", BTree_Count(tree));



printf("Full Tree:\n");

BTree_Display(tree, printf_data, 4, '-');



BTree_Clear(tree);

printf("After Clear:\n");

printf("Height: %d\n", BTree_Height(tree));

printf("Degree: %d\n", BTree_Degree(tree));

printf("Count : %d\n", BTree_Count(tree));



printf("Full Tree:\n");

BTree_Display(tree, printf_data, 4, '-');



BTree_Destroy(tree);



return 0;

}
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: