您的位置:首页 > 编程语言 > MATLAB

Matlab实现线性回归和逻辑回归: Linear Regression & Logistic Regression

2015-04-23 11:24 639 查看
本文为Maching Learning 栏目补充内容,为上几章中所提到单参数线性回归多参数线性回归逻辑回归的总结版。旨在帮助大家更好地理解回归,所以我在Matlab中分别对他们予以实现,在本文中由易到难地逐个介绍。

本讲内容:

Matlab 实现各种回归函数

=========================

基本模型

Y=θ0+θ1X1型---线性回归(直线拟合)

解决过拟合问题---Regularization

Y=1/(1+e^X)型---逻辑回归(sigmod 函数拟合)

=========================



第一部分:基本模型

在解决拟合问题的解决之前,我们首先回忆一下线性回归和逻辑回归的基本模型。

设待拟合参数 θn*1 和输入参数[ xm*n, ym*1 ] 。

对于各类拟合我们都要根据梯度下降的算法,给出两部分:

① cost function(指出真实值y与拟合值h<hypothesis>之间的距离):给出cost function 的表达式,每次迭代保证cost function的量减小;给出梯度gradient,即cost function对每一个参数θ的求导结果。

function [ jVal,gradient ] = costFunction ( theta )

② Gradient_descent(主函数):用来运行梯度下降算法,调用上面的cost function进行不断迭代,直到最大迭代次数达到给定标准或者cost function返回值不再减小。

function [optTheta,functionVal,exitFlag]=Gradient_descent( )

线性回归:拟合方程为hθ(x)=θ0x0+θ1x1+…+θnxn,当然也可以有xn的幂次方作为线性回归项(如

),这与普通意义上的线性不同,而是类似多项式的概念。

其cost function 为:


逻辑回归:拟合方程为hθ(x)=1/(1+e^(θTx)),其cost function 为:


cost function对各θj的求导请自行求取,看第三章最后一图,或者参见后文代码。

后面,我们分别对几个模型方程进行拟合,给出代码,并用matlab中的fit函数进行验证。

第二部分:Y=θ0+θ1X1型---线性回归(直线拟合)

Matlab 线性拟合 & 非线性拟合中我们已经讲过如何用matlab自带函数fit进行直线和曲线的拟合,非常实用。而这里我们是进行ML课程的学习,因此研究如何利用前面讲到的梯度下降法(gradient
descent)进行拟合。

cost function:

[cpp] view
plaincopy

function [ jVal,gradient ] = costFunction2( theta )

%COSTFUNCTION2 Summary of this function goes here

% linear regression -> y=theta0 + theta1*x

% parameter: x:m*n theta:n*1 y:m*1 (m=4,n=1)

%

%Data

x=[1;2;3;4];

y=[1.1;2.2;2.7;3.8];

m=size(x,1);

hypothesis = h_func(x,theta);

delta = hypothesis - y;

jVal=sum(delta.^2);

gradient(1)=sum(delta)/m;

gradient(2)=sum(delta.*x)/m;

end

其中,h_func是hypothesis的结果:

[cpp] view
plaincopy

function [res] = h_func(inputx,theta)

%H_FUNC Summary of this function goes here

% Detailed explanation goes here

%cost function 2

res= theta(1)+theta(2)*inputx;function [res] = h_func(inputx,theta)

end

Gradient_descent:

[cpp] view
plaincopy

function [optTheta,functionVal,exitFlag]=Gradient_descent( )

%GRADIENT_DESCENT Summary of this function goes here

% Detailed explanation goes here

options = optimset('GradObj','on','MaxIter',100);

initialTheta = zeros(2,1);

[optTheta,functionVal,exitFlag] = fminunc(@costFunction2,initialTheta,options);

end

result:

[cpp] view
plaincopy

>> [optTheta,functionVal,exitFlag] = Gradient_descent()

Local minimum found.

Optimization completed because the size of the gradient is less than

the default value of the function tolerance.

<stopping criteria details>

optTheta =

0.3000

0.8600

functionVal =

0.0720

exitFlag =

1

即得y=0.3+0.86x;
验证:

[cpp] view
plaincopy

function [ parameter ] = checkcostfunc( )

%CHECKC2 Summary of this function goes here

% check if the cost function works well

% check with the matlab fit function as standard

%check cost function 2

x=[1;2;3;4];

y=[1.1;2.2;2.7;3.8];

EXPR= {'x','1'};

p=fittype(EXPR);

parameter=fit(x,y,p);

end

运行结果:

[cpp] view
plaincopy

>> checkcostfunc()

ans =

Linear model:

ans(x) = a*x + b

Coefficients (with 95% confidence bounds):

a = 0.86 (0.4949, 1.225)

b = 0.3 (-0.6998, 1.3)

和我们的结果一样。下面画图:

[cpp] view
plaincopy

function PlotFunc( xstart,xend )

%PLOTFUNC Summary of this function goes here

% draw original data and the fitted

%===================cost function 2====linear regression

%original data

x1=[1;2;3;4];

y1=[1.1;2.2;2.7;3.8];

%plot(x1,y1,'ro-','MarkerSize',10);

plot(x1,y1,'rx','MarkerSize',10);

hold on;

%fitted line - 拟合曲线

x_co=xstart:0.1:xend;

y_co=0.3+0.86*x_co;

%plot(x_co,y_co,'g');

plot(x_co,y_co);

hold off;

end



第三部分:解决过拟合问题---Regularization

过拟合问题解决方法我们已在第三章中讲过,利用Regularization的方法就是在cost function中加入关于θ的项,使得部分θ的值偏小,从而达到fit效果。
例如定义costfunction
J(θ): jVal=(theta(1)-5)^2+(theta(2)-5)^2;

在每次迭代中,按照gradient descent的方法更新参数θ:θ(i)-=gradient(i),其中gradient(i)是J(θ)对θi求导的函数式,在此例中就有gradient(1)=2*(theta(1)-5), gradient(2)=2*(theta(2)-5)。

函数costFunction,
定义jVal=J(θ)和对两个θ的gradient:

[cpp] view
plaincopy

function [ jVal,gradient ] = costFunction( theta )

%COSTFUNCTION Summary of this function goes here

% Detailed explanation goes here

jVal= (theta(1)-5)^2+(theta(2)-5)^2;

gradient = zeros(2,1);

%code to compute derivative to theta

gradient(1) = 2 * (theta(1)-5);

gradient(2) = 2 * (theta(2)-5);

end

Gradient_descent,进行参数优化

[cpp] view
plaincopy

function [optTheta,functionVal,exitFlag]=Gradient_descent( )

%GRADIENT_DESCENT Summary of this function goes here

% Detailed explanation goes here

options = optimset('GradObj','on','MaxIter',100);

initialTheta = zeros(2,1)

[optTheta,functionVal,exitFlag] = fminunc(@costFunction,initialTheta,options);

end

matlab主窗口中调用,得到优化厚的参数(θ1,θ2)=(5,5)

[cpp] view
plaincopy

[optTheta,functionVal,exitFlag] = Gradient_descent()

initialTheta =

0

0

Local minimum found.

Optimization completed because the size of the gradient is less than

the default value of the function tolerance.

<stopping criteria details>

optTheta =

5

5

functionVal =

0

exitFlag =

1

[b]第四部分:Y=1/(1+e^X)型---逻辑回归(sigmod 函数拟合)[/b]

hypothesis function:

[cpp] view
plaincopy

function [res] = h_func(inputx,theta)

%cost function 3

tmp=theta(1)+theta(2)*inputx;%m*1

res=1./(1+exp(-tmp));%m*1

end

cost function:

[cpp] view
plaincopy

function [ jVal,gradient ] = costFunction3( theta )

%COSTFUNCTION3 Summary of this function goes here

% Logistic Regression

x=[-3; -2; -1; 0; 1; 2; 3];

y=[0.01; 0.05; 0.3; 0.45; 0.8; 1.1; 0.99];

m=size(x,1);

%hypothesis data

hypothesis = h_func(x,theta);

%jVal-cost function & gradient updating

jVal=-sum(log(hypothesis+0.01).*y + (1-y).*log(1-hypothesis+0.01))/m;

gradient(1)=sum(hypothesis-y)/m; %reflect to theta1

gradient(2)=sum((hypothesis-y).*x)/m; %reflect to theta 2

end

Gradient_descent:

[cpp] view
plaincopy

function [optTheta,functionVal,exitFlag]=Gradient_descent( )

options = optimset('GradObj','on','MaxIter',100);

initialTheta = [0;0];

[optTheta,functionVal,exitFlag] = fminunc(@costFunction3,initialTheta,options);

end

运行结果:

[cpp] view
plaincopy

[optTheta,functionVal,exitFlag] = Gradient_descent()

Local minimum found.

Optimization completed because the size of the gradient is less than

the default value of the function tolerance.

<stopping criteria details>

optTheta =

0.3526

1.7573

functionVal =

0.2498

exitFlag =

1

画图验证:

[cpp] view
plaincopy

function PlotFunc( xstart,xend )

%PLOTFUNC Summary of this function goes here

% draw original data and the fitted

%===================cost function 3=====logistic regression

%original data

x=[-3; -2; -1; 0; 1; 2; 3];

y=[0.01; 0.05; 0.3; 0.45; 0.8; 1.1; 0.99];

plot(x,y,'rx','MarkerSize',10);

hold on

%fitted line

x_co=xstart:0.1:xend;

theta = [0.3526,1.7573];

y_co=h_func(x_co,theta);

plot(x_co,y_co);

hold off

end



有朋友问,这里就补充一下logistic regression中gradient的推导:





则有




由于cost function




可得




所以gradient = -J'(theta) = (z-y)x

关于Machine Learning更多的学习资料将继续更新,敬请关注本博客和新浪微博Sophia_qing

==============================

Reference:
1. /article/1820920.html
2./article/1820919.html
3./article/1820912.html
4./article/1820923.html
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: 
相关文章推荐