您的位置:首页 > 其它

mit 18.06 linear algebra video note

2014-09-21 15:47 337 查看
//////////////////////////////////////////////////////////////

14:15 2014-8-24 Sunday

start "introduction to linear algebra", video I

2 videos * 17 days == 34 videos

14:16 2014-8-24

row picture, column picture

14:30 2014-8-24

linear combination

14:34 2014-8-24

"the big picture"

-----------------------------------

15:43 2014-8-24

introduction to linear algebra, video II

15:43 2014-8-24

elimination

15:57 2014-8-24

Gaussian elimination

15:57 2014-8-24

pivot

15:57 2014-8-24

forward elimination, backward substitution

15:58 2014-8-24

row exchange

16:10 2014-8-24

augmentd matrix

16:21 2014-8-24

the elimination steps I want to express as matrix

16:29 2014-8-24

elimination matrix

16:48 2014-8-24

particular important:

1. matrix * column vector

2. row vector * matrix

16:49 2014-8-24

E  // elimination matrix

P  // permutation matrix

17:11 2014-8-24

row operation, column operation

17:16 2014-8-24

EA = U  // from A to U

A = LU  // from U to A

--------------------------------------------------

17:35 2014-8-24

introduction to linear algebra, video III

17:36 2014-8-24

matrix multiplication

17:40 2014-8-24

block multiplication

18:09 2014-8-24

invertible(nonsingular)

18:19 2014-8-24

Gauss-Jordan idea

18:58 2014-8-24

upper triangular matrix // U

19:05 2014-8-24

matrix inverse with Gauss-Jordan method

/////////////////////////////////////////////////////////////////

///

7:03 2014-8-25 Monday

start introduction to linear algebra, video 4

13:45 2014-8-25

A = LU //  EA = U => A = inv(E) * U

13:45 2014-8-25

PA = LU

14:47 2014-8-25

permutation matrix

14:50 2014-8-25

introduction to linear algebra, video 5

15:06 2014-8-25

vector space

15:06 2014-8-25

subspace

15:06 2014-8-25

symmetric matrix

15:28 2014-8-25

vector space

15:38 2014-8-25

zero vector

15:38 2014-8-25

column vector, column space

15:43 2014-8-25

subspace came from matrix A: C(A)

// column space

16:04 2014-8-25

linear combination of columns => column space

16:06 2014-8-25

how to create a subspace from a matrix? // column space

///////////////////////////////////////////

14:43 2014-8-26 Tuesday

finish linear algebra text, chapter 3

------------------------------------------------------

today's goal, video 6, 7

14:44 2014-8-26

introduction to linear algebra, video 6 // chapter 3

vector space, subspace, column space

14:47 2014-8-26

C(A) // column space

N(A) // null space

14:48 2014-8-26

vector space // close for linear combinations

14:51 2014-8-26

column space of a matrix

15:03 2014-8-26

which right-hand side allow me to solve this?

15:20 2014-8-26

N(A)   // nullspace

-----------------------------------------------------

16:05 2014-8-26

start introduction to linear algebra, video 7

find nullspace...

rref // reduced row echelon form

16:05 2014-8-26

pivot column, free column

pivot variable, free variable

16:06 2014-8-26

while I'm doing the elimination, I'm 

not changing the nullspace

16:08 2014-8-26

elimination does change the column space!

16:08 2014-8-26

echelon form // U for rectangular matrix

16:13 2014-8-26

rank of matrix:

number of pivots

16:15 2014-8-26

special solution  // linear combination => nullspace solution

particular solution

16:41 2014-8-26

echelon form(staircase, U) => rref // reduced row echelon form

16:47 2014-8-26

I could do elimination upward // echelon form => rref

16:53 2014-8-26

block matrix

17:16 2014-8-26

N // nullspace matrix

/////////////////////////////////////////////

13:50 2014-8-27 Wednesday

introduction to linear algebra, video 8, 9

13:51 2014-8-27

[A b] // augmented matrix

13:54 2014-8-27

Xcomplete = Xparticular + Xnullspace

14:28 2014-8-27

X = Xr + Xn 

// Xr rowspace solution

// Xn nullspace solution

14:29 2014-8-27

full column rank

full row rank

14:54 2014-8-27

square matrix, rectangular matrix

---------------------------------------------

15:23 2014-8-27

start introduction to linear algebra, video 9

15:23 2014-8-27

independence, span, basis, dimension

15:26 2014-8-27

there is something in the nullspace of A, 

rather than just the zero vector!

15:28 2014-8-27

basis for vector space

15:56 2014-8-27

dim C(A) = r

dim N(A) = n - r

/////////////////////////////////////////////////////////////

9:52 2014-8-28 Thursday

complete introduction to linear algebra text,

chapter, determinant

9:52 2014-8-28

introduction to linear algebra, video 9

the four fundamental subspace

9:53 2014-8-28

standard basis

9:55 2014-8-28

orthogonal complement

10:11 2014-8-28

dimension of a vector space:

#number of basis

10:13 2014-8-28

we have this great fact to establish

10:17 2014-8-28

elimination, row reduction

10:22 2014-8-28

A is "square & invertible" matrix =>

A is rectangular matrix

10:40 2014-8-28

elementary matrix

10:43 2014-8-28

rref == reduced row echelon form

-----------------------------------------

11:04 2014-8-28

start introduction to linear algebra, video 11

11:04 2014-8-28

matrix space

11:14 2014-8-28

solution space

11:38 2014-8-28

rank one matrix

11:45 2014-8-28

How many steps does it take from anybody to anybody?

12:45 2014-8-28

small world graph  // node, edge

///////////////////////////////////////////////////////////////

8:09 2014-8-29 Friday

potential, potential difference, flow

13:40 2014-8-29

graph // node, edge

13:40 2014-8-29

incidence matrix

13:42 2014-8-29

orthogonal vectors,

orthogonal subspace,

orthogonal basis

14:56 2014-8-29

orthogonal vectors => orthogonal subspaces

15:09 2014-8-29

orthogonal complement

15:20 2014-8-29

row space is orthogonal to nullspace

15:20 2014-8-29

fundamental theorem of linear algebra

15:41 2014-8-29

least square:

Ax = b => A'Ax = A'b // normal equation

---------------------------------------------------

16:07 2014-8-29

start introduction to linear algebra, video 15

projections, projection matrix, least square

16:08 2014-8-29

e == error vector

17:00 2014-8-29

square matrix, 

rectangular matrix

square & invertible matrix

/////////////////////////////////////////////////////////////////

18:33 2014/8/30 Saturday

regression, linear regression

18:34 2014/8/30

normal equations

///////////////////////////////////////////////

8:11 2014/8/31

start introductiont to linear algebra, video 17

orthogonal basis, orthogonal matrix, Gram-schmit

8:12 2014/8/31

orthonormal

8:12 2014/8/31

orthogonal matrix: Q

8:13 2014/8/31

Q is orthogonal matrix =>

Q has orthonormal columns

8:46 2014/8/31

independent vectors => orthogonal vectors => orthonormal vectors

9:01 2014/8/31

projection, orthogonal, error vector

9:04 2014/8/31

A = QR 

// R is upper triangular

// Q is orthogonal matrix

// A is square matrix with independent columns

9:33 2014/8/31

start introduction to linear algebra, video 18

determinant of a square matrix

9:36 2014/8/31

the determinant is a number associated with

every square matrix

9:55 2014/8/31

invertible <=> determinant != 0

singular   <=> determinant == 0

9:57 2014/8/31

the 3 basic properties of determinant:

1. det(I) = 1

2. exchange row => reverse sign

3. linear property for each row(column)

10:10 2014/8/31

elimination does not change the determinant

10:14 2014/8/31

property 7:

det(triangular matrix) == (d1)(d2)...(dn) // product of diagonal

10:30 2014/8/31

determinant of "triangular matrix" is just

the product of diagonal entries

10:36 2014/8/31

property 9:  ???

det AB = detA * detB

10:46 2014/8/31

property 10:

det(A) == det(A') // transpose does not change det

/////////////////////////////////////////////////////////////////

////////////

8:02 2014/9/1 Monday

introduction to linear algebra, video 19

determinant

8:03 2014/9/1

How to find determinant of square matrix?

1. big formula

2. cofactor

3. pivots

8:03 2014/9/1

row exchange reverse sign

8:41 2014/9/1

Why can we use elimination to get upper triangular matrix,

the use the product of pivots to get det(A)?

because elimination does not change determinant!

--------------------------------------------------------------

9:56 2014/9/1

start introduction to linear algebra, video 20

1. formula for determinant

2. Cramer's rule for x = inv(A) * b

9:57 2014/9/1

cofactor matrix

10:26 2014/9/1

inv(A) =  C' / det(A) // C: cofactor matrix

10:27 2014/9/1

How to find the inv(A)?

1. Gauss-Jordan method

2. formula: inv(A) =  C' / det(A)

10:35 2014/9/1

the validity of the formula:

just check, C'A = det(A) I 

10:35 2014/9/1

why det(A*B) == det(A) * det(B)?

why Cramer's rule?

///////////////////////////////////////////////////////////

7:24 2014/9/2 Tuesday

start introduction to linear algebra, video 21

eigenvalues

10:57 2014/9/2

det(A - lambda * I) = 0

trace = sum of eigenvalues

10:58 2014/9/2

eigenvalues, eigenvectors

10:58 2014/9/2

Ax = λx // x: eigenvectors, λ:eigenvalue

Ax parallel to x, Ax is some multiple of some x!

11:09 2014/9/2

we look for special vectors!

11:09 2014/9/2

following the eigenvector direction

11:22 2014/9/2

projection matrix

11:27 2014/9/2

sum of the diagonal values == sum of the eigenvalues

a11 + a22 + ... + ann == λ1+ λ2 + λ3 + ... + λn

// trace

11:45 2014/9/2

det(A-λI) = 0 

// characteristic equation, eigenvalue equation

////////////////////////////////////////////////////////////

7:56 2014/9/3 Wednesday

introduction linear algebra, video 22

diagonalizing a matrix

powers of A / equation Uk+1 = A*Uk

7:57 2014/9/3

diagonalizable

8:38 2014/9/3

distinct eigenvalues => independent eigenvectors

8:54 2014/9/3

Uk = A * Uk+1 // A: transition matrix

8:59 2014/9/3

powers of A

8:59 2014/9/3

system of differential equations

system of equations

8:59 2014/9/3

to really solve, write U0 as a combination

of eigenvectors!

9:02 2014/9/3

"following the eigenvector direction!"

9:02 2014/9/3

eigenvalues == pole ???

9:33 2014/9/3

dorminant pole

9:33 2014/9/3

we're doing problems that evolving,

we're doing "dynamic", things evolving with time,

eigenvalues are crucial numbers!

9:36 2014/9/3

find the eigenvalue & eigenvector of A,

break U0 as combination of eigenvectors of A

///////////////////////////////////////////////

7:46 2014-09-04

start linear algebra, video 23

differential equations

7:46 2014-09-04

exp(At) ???

7:47 2014-09-04

eigenvalues <=> poles

8:14 2014-09-04

the whole point of eigenvector is to uncouple

8:38 2014-09-04

by uncoupling it, I mean to diagonalize it

8:40 2014-09-04

it's a system of equations, but they're 

not connected

8:44 2014-09-04

matrix exponential: exp(At)

8:47 2014-09-04

power series  // infinite series, series expansion

8:48 2014-09-04

complex plane

--------------------------------------------

15:52 2014-09-04 Thursday

Harvard statistics video I

15:52 2014-09-04

pattern recognition skills

15:52 2014-09-04

sample space

16:47 2014-09-04

experiment

16:47 2014-09-04

event

16:48 2014-09-04

an event is a subset of a sample space

16:51 2014-09-04

permutation, combination // counting

17:31 2014-09-04

multiplication rule

17:31 2014-09-04

sampling

---------------------------------------------

17:45 2014-09-04

mit multivariable calculus, video I

vector

17:45 2014-09-04

law of cosine

18:14 2014-09-04

detect orthogonality

////////////////////////////////////////////////

7:31 2014-09-05 Friday

start linear algebra, video 24

Markov matrix

8:41 2014-09-05

2 properties of Markov matrix:

1. all enteries >= 0

2. all columns add to 1

9:01 2014-09-05

eigenvalues:

1. stability    // λ < 0

2. steady state // λ = 0

3. blow up

9:03 2014-09-05

eigenvalues of A == eigenvalues of A'

9:25 2014-09-05

state transition matrix

9:39 2014-09-05

what can you tell me about the population in k steps?

9:40 2014-09-05

eigenvalue, eigenvector, Markov matrix

9:45 2014-09-05

Fourier series projections

9:53 2014-09-05

projection with orthonormal basis:

q1, q2, ..., qn

9:53 2014-09-05

V = x1 * q1 + x2 * q2 + ... + xn * qn

9:55 2014-09-05

but what is the dot product of functions?

////////////////////////////////////////////////////////////////

7:14 2014-09-06 Saturday

symmetric matrix, positive definite matrix

7:15 2014-09-06

What is special about symmetric matrix?  // A == A'

1. The eigenvalues are REAL

2. The eigenvectors are ORTHOGONAL  // can be chosen

7:22 2014-09-06

the usual case: A == SΛinv(S)

symmetric case: A = QΛQ'  // Q is orthogonal matrix

7:28 2014-09-06

Q: orthogonal matrix // with all columns are orthonormal basis

7:29 2014-09-06

 A = QΛQ'

// spectrum theorem

// principle axis theorem

7:34 2014-09-06

Why real eigenvalues? // symmetric matrix

15:07 2014-09-06

symmetric matrix is a combination of perpendicular 

projection matrix

15:07 2014-09-06

for symmetric matrix(A == A'), the signs

of pivots same as signs of λ(eigenvalue)'s

15:12 2014-09-06

det(A) == product of pivots == product of eigenvalues

15:15 2014-09-06

What is a positive definite matrix?

they're symmetric matrix with all eigenvalues are real

// all eigenvalues are positive

// all pivots are positive

// all subdeterminant are positive

15:18 2014-09-06

start linear algebra, video 26

complex matrix, DFT, FFT

16:51 2014-09-06

Hermitian matrix

17:22 2014-09-06

for Hermitian matrix:

1. symmetric => Hermitian

2. orthogonal => unitary

17:29 2014-09-06

DFT matrix

17:32 2014-09-06

Fourier matrix

17:42 2014-09-06

matrix factorization

//////////////////////////////////////////////////////

7:57 2014-09-07

linear algebra, video 27

positive definite matrix, test for minimum...

7:58 2014-09-07

positive definite: x'Ax > 0

/////////////////////////////////////////////////////////////////

////

10:28 2014-09-08 Monday

introduction to linear algebra, video 28

similar matrix

10:28 2014-09-08

positive definite matrix:

x'Ax > 0 except for x = 0

10:38 2014-09-08

where does positive definite matrix come from?

// least square Ax = b => 

// A'Ax = A'b, normal equation

10:38 2014-09-08

A'A is positive definite, just see

x'A'Ax == (Ax)'(Ax)

10:46 2014-09-08

A'A is square, symmetric, positive definite

10:51 2014-09-08

SVD == Singular Value Decomposition

10:52 2014-09-08

singlular value

10:52 2014-09-08

similar matrix:

A & B are both n by n matrix,

17:46 2014-09-08

similar matrices have the same eigenvalue

17:46 2014-09-08

A = UΣV'  

// A is any rectangular matrix

// Σ is diagonal matrix

// U & V are orthogonal matrix

18:22 2014-09-08

AV = UΣ // U, V orthogonal basis

18:36 2014-09-08

start Harvard Gambler's Ruin and Random variables, video 7

19:25 2014-09-08

random variables & their distribution

19:27 2014-09-08

Grambler's ruin

19:28 2014-09-08

LOTP == Law Of Total Probability

19:42 2014-09-08

PMF == Probability Mass Function

PDF == Probability Density Function

20:30 2014-09-08

SVD for symmetric positive definite matrix:

A = QΛQ'

/////////////////////////////////////////////////////////

13:31 2014-09-11

linear algebra, video 30,  linear transformation

13:32 2014-09-11

the projection is a linear transformation

13:46 2014-09-11

rotation transformation

13:56 2014-09-11

rotation is also a "linear transformation"

13:57 2014-09-11

linear transformation with coordinates // matrix

14:08 2014-09-11

find the matrix behind it(linear transformation)

14:10 2014-09-11

coordinates come from basis

14:30 2014-09-11

component == coordinate * bisis

14:32 2014-09-11

input basis, output basis

14:40 2014-09-11

basis, coordinate, linear transformation

14:51 2014-09-11

A * input coordinate == output coordinate

// matrix does the job!

14:52 2014-09-1111

A * x = λ * x // eigenvector x is a good coordinate!

15:06 2014-09-11

standard basis => eigenvector basis

15:08 2014-09-11

input space => output space

input basis => output basis

input coordinate => output coordinate

15:12 2014-09-11

the linear transformation which takes a derivative

15:27 2014-09-11

inverse matrix gives the inverse of the linear transformation

----------------------------------------------------------

15:36 2014-09-11

start linear algebra, video 31, the last video!

change of basis

15:38 2014-09-11

linear transformation <=> matrix

16:02 2014-09-11

image compression

16:02 2014-09-11

lossless compression, lossy compression

16:07 2014-09-11

JPEG // change of basis, standard basis => Fourier basis

16:13 2014-09-11

standard basis => better basis

16:13 2014-09-11

what basis to choose?  // image compression

16:15 2014-09-11

JPEG choose "Fourier basis"

16:16 2014-09-11

you have to use prediction & correction

16:38 2014-09-11

wavelet basis

16:40 2014-09-11

Fourier basis => wavelet basis

16:41 2014-09-11

standar basis => wavelet basis

16:47 2014-09-11

a good basis has a nice fast inverse!

16:48 2014-09-11

p = Wc  =>

c = inv(W) * P

16:49 2014-09-11

FFT == Fast Fourier Transform

16:49 2014-09-11

the nice property of orthogonal matrix:

inv(Q) = Q' // inverse is just transpose

16:53 2014-09-11

JPEG     // Fourier basis

JPEG2000 // wavelet basis

17:02 2014-09-11

change of basis

17:05 2014-09-11

I have my vector in one basis, and I want to 

change it to another one.

17:06 2014-09-11

eigenvector basis

17:28 2014-09-11

following the eigenvector direction!

---------------------------------------------------------------
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: 
相关文章推荐