您的位置:首页 > 运维架构 > Linux

Linux内核之基数树

2014-04-29 13:54 423 查看
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

#ifdef __KERNEL__
#define RADIX_TREE_MAP_SHIFT	(CONFIG_BASE_SMALL ? 4 : 6)
#else
#define RADIX_TREE_MAP_SHIFT	3	/* For more stressful testing */
#endif

#define RADIX_TREE_MAP_SIZE	(1UL << RADIX_TREE_MAP_SHIFT)
#define RADIX_TREE_MAP_MASK	(RADIX_TREE_MAP_SIZE-1)

#define RADIX_TREE_TAG_LONGS	\
((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG)

struct radix_tree_node {
unsigned int	height;		/* Height from the bottom */  /*数的高度*/
unsigned int	count;  /*表示slots  数组中已占用的数组项的数目*/
struct rcu_head	rcu_head;  /*RCU  机制用于对基数树进行无锁查找*/
/*指针数组,根据结点在数中的层次,指向其他
结点或数据元素。默认情况下,数组大小为1 << 6 = 64.
空的数组项设置为NULL  指针
*/
void		*slots[RADIX_TREE_MAP_SIZE];
/*每个树结点都可以和标记关联。标记对应于一个置位
或未置位的比特位。每个结点最多有RADIX_TREE_TAG_LONGS  个
不同的标记,默认值为2.  这对于页缓存的结构已经足够了
*/
unsigned long	tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS];
};

struct radix_tree_path {
struct radix_tree_node *node;
int offset;
};

#define RADIX_TREE_INDEX_BITS  (8 /* CHAR_BIT */ * sizeof(unsigned long))
#define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \
RADIX_TREE_MAP_SHIFT))

/*
* The height_to_maxindex array needs to be one deeper than the maximum
* path as height 0 holds only 1 entry.
*/
static unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1] __read_mostly;

/*
* Radix tree node cache.
*/
static struct kmem_cache *radix_tree_node_cachep;

/*
* Per-cpu pool of preloaded nodes
*/
struct radix_tree_preload {
int nr;
struct radix_tree_node *nodes[RADIX_TREE_MAX_PATH];
};
static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };

static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
{
return root->gfp_mask & __GFP_BITS_MASK;
}

static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
int offset)
{
__set_bit(offset, node->tags[tag]);
}

static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
int offset)
{
__clear_bit(offset, node->tags[tag]);
}

static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
int offset)
{
return test_bit(offset, node->tags[tag]);
}

static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
{
root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
}

static inline void root_tag_clear(struct radix_tree_root *root, unsigned int tag)
{
root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
}

static inline void root_tag_clear_all(struct radix_tree_root *root)
{
root->gfp_mask &= __GFP_BITS_MASK;
}

static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
{
return (__force unsigned)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
}

/*
* Returns 1 if any slot in the node has this tag set.
* Otherwise returns 0.
*/
static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
{
int idx;
for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
if (node->tags[tag][idx])
return 1;
}
return 0;
}
/*
* This assumes that the caller has performed appropriate preallocation, and
* that the caller has pinned this thread of control to the current CPU.
*/
static struct radix_tree_node *
radix_tree_node_alloc(struct radix_tree_root *root)
{
struct radix_tree_node *ret = NULL;
gfp_t gfp_mask = root_gfp_mask(root);

if (!(gfp_mask & __GFP_WAIT)) {
struct radix_tree_preload *rtp;

/*
* Provided the caller has preloaded here, we will always
* succeed in getting a node here (and never reach
* kmem_cache_alloc)
*/
rtp = &__get_cpu_var(radix_tree_preloads);
if (rtp->nr) {
ret = rtp->nodes[rtp->nr - 1];
rtp->nodes[rtp->nr - 1] = NULL;
rtp->nr--;
}
}
if (ret == NULL)
ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);

BUG_ON(radix_tree_is_indirect_ptr(ret));
return ret;
}

static void radix_tree_node_rcu_free(struct rcu_head *head)
{
struct radix_tree_node *node =
container_of(head, struct radix_tree_node, rcu_head);

/*
* must only free zeroed nodes into the slab. radix_tree_shrink
* can leave us with a non-NULL entry in the first slot, so clear
* that here to make sure.
*/
tag_clear(node, 0, 0);
tag_clear(node, 1, 0);
node->slots[0] = NULL;
node->count = 0;

kmem_cache_free(radix_tree_node_cachep, node);
}

static inline void
radix_tree_node_free(struct radix_tree_node *node)
{
call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
}

/*
* Load up this CPU's radix_tree_node buffer with sufficient objects to
* ensure that the addition of a single element in the tree cannot fail.  On
* success, return zero, with preemption disabled.  On error, return -ENOMEM
* with preemption not disabled.
*
* To make use of this facility, the radix tree must be initialised without
* __GFP_WAIT being passed to INIT_RADIX_TREE().
*/
int radix_tree_preload(gfp_t gfp_mask)
{
struct radix_tree_preload *rtp;
struct radix_tree_node *node;
int ret = -ENOMEM;

preempt_disable();
rtp = &__get_cpu_var(radix_tree_preloads);
while (rtp->nr < ARRAY_SIZE(rtp->nodes)) {
preempt_enable();
node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
if (node == NULL)
goto out;
preempt_disable();
rtp = &__get_cpu_var(radix_tree_preloads);
if (rtp->nr < ARRAY_SIZE(rtp->nodes))
rtp->nodes[rtp->nr++] = node;
else
kmem_cache_free(radix_tree_node_cachep, node);
}
ret = 0;
out:
return ret;
}
EXPORT_SYMBOL(radix_tree_preload);

/*
*	Return the maximum key which can be store into a
*	radix tree with height HEIGHT.
*/
/*
树可容纳结点的最大数目,可以从树的高度(及结点层次
的数目) 直接推出
*/
static inline unsigned long radix_tree_maxindex(unsigned int height)
{
return height_to_maxindex[height];
}

/*
*	Extend a radix tree so it can store key @index.
*/
/*修改树的高度*/
static int radix_tree_extend(struct radix_tree_root *root, unsigned long index)
{
struct radix_tree_node *node;
unsigned int height;
int tag;

/* Figure out what the height should be.  */
/*算出树应该具有的高度*/
height = root->height + 1;
while (index > radix_tree_maxindex(height))
height++;

if (root->rnode == NULL) {
root->height = height;
goto out;
}

do {
unsigned int newheight;
if (!(node = radix_tree_node_alloc(root)))
return -ENOMEM;

/* Increase the height.  */ /*增加高度*/
node->slots[0] = radix_tree_indirect_to_ptr(root->rnode);

/* Propagate the aggregated tag info into the new root */
/*将聚集的标记信息传播到新结点*/
for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
if (root_tag_get(root, tag))
tag_set(node, tag, 0);
}

newheight = root->height+1;
node->height = newheight;
node->count = 1;
node = radix_tree_ptr_to_indirect(node);
rcu_assign_pointer(root->rnode, node);
root->height = newheight;
} while (height > root->height);
out:
return 0;
}

/**
*	radix_tree_insert    -    insert into a radix tree
*	@root:		radix tree root
*	@index:		index key
*	@item:		item to insert
*
*	Insert an item into the radix tree at position @index.
*/
/*将一个新节点插入到基数树*/
int radix_tree_insert(struct radix_tree_root *root,
unsigned long index, void *item)
{
struct radix_tree_node *node = NULL, *slot;
unsigned int height, shift;
int offset;
int error;

BUG_ON(radix_tree_is_indirect_ptr(item));

/* Make sure the tree is high enough.  */
if (index > radix_tree_maxindex(root->height)) {
error = radix_tree_extend(root, index);
if (error)
return error;
}

slot = radix_tree_indirect_to_ptr(root->rnode);

height = root->height;
shift = (height-1) * RADIX_TREE_MAP_SHIFT;

/*避免未初始化变量时的警告*/
offset = 0;			/* uninitialised var warning */
while (height > 0) {
if (slot == NULL) {
/* Have to add a child node.  */
/*必须添加一个子节点*/
if (!(slot = radix_tree_node_alloc(root)))
return -ENOMEM;
slot->height = height;
if (node) {
rcu_assign_pointer(node->slots[offset], slot);
node->count++;
} else
rcu_assign_pointer(root->rnode,
radix_tree_ptr_to_indirect(slot));
}

/* Go a level down */ /*向下一层*/
offset = (index >> shift) & RADIX_TREE_MAP_MASK;
node = slot;
slot = node->slots[offset];
shift -= RADIX_TREE_MAP_SHIFT;
height--;
}

if (slot != NULL)
return -EE
4000
XIST;

if (node) {
node->count++;
rcu_assign_pointer(node->slots[offset], item);
BUG_ON(tag_get(node, 0, offset));
BUG_ON(tag_get(node, 1, offset));
} else {
rcu_assign_pointer(root->rnode, item);
BUG_ON(root_tag_get(root, 0));
BUG_ON(root_tag_get(root, 1));
}

return 0;
}
EXPORT_SYMBOL(radix_tree_insert);

/*
* is_slot == 1 : search for the slot.
* is_slot == 0 : search for the node.
*/
static void *radix_tree_lookup_element(struct radix_tree_root *root,
unsigned long index, int is_slot)
{
unsigned int height, shift;
struct radix_tree_node *node, **slot;

node = rcu_dereference(root->rnode);
if (node == NULL)
return NULL;

if (!radix_tree_is_indirect_ptr(node)) {
if (index > 0)
return NULL;
return is_slot ? (void *)&root->rnode : node;
}
node = radix_tree_indirect_to_ptr(node);

height = node->height;
if (index > radix_tree_maxindex(height))
return NULL;

shift = (height-1) * RADIX_TREE_MAP_SHIFT;

do {
slot = (struct radix_tree_node **)
(node->slots + ((index>>shift) & RADIX_TREE_MAP_MASK));
node = rcu_dereference(*slot);
if (node == NULL)
return NULL;

shift -= RADIX_TREE_MAP_SHIFT;
height--;
} while (height > 0);

return is_slot ? (void *)slot:node;
}

/**
*	radix_tree_lookup_slot    -    lookup a slot in a radix tree
*	@root:		radix tree root
*	@index:		index key
*
*	Returns:  the slot corresponding to the position @index in the
*	radix tree @root. This is useful for update-if-exists operations.
*
*	This function can be called under rcu_read_lock iff the slot is not
*	modified by radix_tree_replace_slot, otherwise it must be called
*	exclusive from other writers. Any dereference of the slot must be done
*	using radix_tree_deref_slot.
*/
void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
{
return (void **)radix_tree_lookup_element(root, index, 1);
}
EXPORT_SYMBOL(radix_tree_lookup_slot);

/**
*	radix_tree_lookup    -    perform lookup operation on a radix tree
*	@root:		radix tree root
*	@index:		index key
*
*	Lookup the item at the position @index in the radix tree @root.
*
*	This function can be called under rcu_read_lock, however the caller
*	must manage lifetimes of leaf nodes (eg. RCU may also be used to free
*	them safely). No RCU barriers are required to access or modify the
*	returned item, however.
*/
/*在基数树中根据键值查找结点*/
void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
{
return radix_tree_lookup_element(root, index, 0);
}
EXPORT_SYMBOL(radix_tree_lookup);

/**
*	radix_tree_tag_set - set a tag on a radix tree node
*	@root:		radix tree root
*	@index:		index key
*	@tag: 		tag index
*
*	Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
*	corresponding to @index in the radix tree.  From
*	the root all the way down to the leaf node.
*
*	Returns the address of the tagged item.   Setting a tag on a not-present
*	item is a bug.
*/
/*
用于设置radix_tree_node  的标记比特位,注意:
从根到页的每个结点都会设置
*/
void *radix_tree_tag_set(struct radix_tree_root *root,
unsigned long index, unsigned int tag)
{
unsigned int height, shift;
struct radix_tree_node *slot;

height = root->height;
BUG_ON(index > radix_tree_maxindex(height));

slot = radix_tree_indirect_to_ptr(root->rnode);
shift = (height - 1) * RADIX_TREE_MAP_SHIFT;

while (height > 0) {
int offset;

offset = (index >> shift) & RADIX_TREE_MAP_MASK;
if (!tag_get(slot, tag, offset))
tag_set(slot, tag, offset);
slot = slot->slots[offset];
BUG_ON(slot == NULL);
shift -= RADIX_TREE_MAP_SHIFT;
height--;
}

/* set the root's tag bit */
if (slot && !root_tag_get(root, tag))
root_tag_set(root, tag);

return slot;
}
EXPORT_SYMBOL(radix_tree_tag_set);

/**
*	radix_tree_tag_clear - clear a tag on a radix tree node
*	@root:		radix tree root
*	@index:		index key
*	@tag: 		tag index
*
*	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
*	corresponding to @index in the radix tree.  If
*	this causes the leaf node to have no tags set then clear the tag in the
*	next-to-leaf node, etc.
*
*	Returns the address of the tagged item on success, else NULL.  ie:
*	has the same return value and semantics as radix_tree_lookup().
*/
/*
用于设置radix_tree_node  的标记比特位,注意:
从根到页的每个结点都会设置
*/
void *radix_tree_tag_clear(struct radix_tree_root *root,
unsigned long index, unsigned int tag)
{
/*
* The radix tree path needs to be one longer than the maximum path
* since the "list" is null terminated.
*/
struct radix_tree_path path[RADIX_TREE_MAX_PATH + 1], *pathp = path;
struct radix_tree_node *slot = NULL;
unsigned int height, shift;

height = root->height;
if (index > radix_tree_maxindex(height))
goto out;

shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
pathp->node = NULL;
slot = radix_tree_indirect_to_ptr(root->rnode);

while (height > 0) {
int offset;

if (slot == NULL)
goto out;

offset = (index >> shift) & RADIX_TREE_MAP_MASK;
pathp[1].offset = offset;
pathp[1].node = slot;
slot = slot->slots[offset];
pathp++;
shift -= RADIX_TREE_MAP_SHIFT;
height--;
}

if (slot == NULL)
goto out;

while (pathp->node) {
if (!tag_get(pathp->node, tag, pathp->offset))
goto out;
tag_clear(pathp->node, tag, pathp->offset);
if (any_tag_set(pathp->node, tag))
goto out;
pathp--;
}

/* clear the root's tag bit */
if (root_tag_get(root, tag))
root_tag_clear(root, tag);

out:
return slot;
}
EXPORT_SYMBOL(radix_tree_tag_clear);

/**
* radix_tree_tag_get - get a tag on a radix tree node
* @root:		radix tree root
* @index:		index key
* @tag: 		tag index (< RADIX_TREE_MAX_TAGS)
*
* Return values:
*
*  0: tag not present or not set
*  1: tag set
*/
int radix_tree_tag_get(struct radix_tree_root *root,
unsigned long index, unsigned int tag)
{
unsigned int height, shift;
struct radix_tree_node *node;
int saw_unset_tag = 0;

/* check the root's tag bit */
if (!root_tag_get(root, tag))
return 0;

node = rcu_dereference(root->rnode);
if (node == NULL)
return 0;

if (!radix_tree_is_indirect_ptr(node))
return (index == 0);
node = radix_tree_indirect_to_ptr(node);

height = node->height;
if (index > radix_tree_maxindex(height))
return 0;

shift = (height - 1) * RADIX_TREE_MAP_SHIFT;

for ( ; ; ) {
int offset;

if (node == NULL)
return 0;

offset = (index >> shift) & RADIX_TREE_MAP_MASK;

/*
* This is just a debug check.  Later, we can bale as soon as
* we see an unset tag.
*/
if (!tag_get(node, tag, offset))
saw_unset_tag = 1;
if (height == 1) {
int ret = tag_get(node, tag, offset);

BUG_ON(ret && saw_unset_tag);
return !!ret;
}
node = rcu_dereference(node->slots[offset]);
shift -= RADIX_TREE_MAP_SHIFT;
height--;
}
}
EXPORT_SYMBOL(radix_tree_tag_get);

/**
*	radix_tree_next_hole    -    find the next hole (not-present entry)
*	@root:		tree root
*	@index:		index key
*	@max_scan:	maximum range to search
*
*	Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the lowest
*	indexed hole.
*
*	Returns: the index of the hole if found, otherwise returns an index
*	outside of the set specified (in which case 'return - index >= max_scan'
*	will be true). In rare cases of index wrap-around, 0 will be returned.
*
*	radix_tree_next_hole may be called under rcu_read_lock. However, like
*	radix_tree_gang_lookup, this will not atomically search a snapshot of
*	the tree at a single point in time. For example, if a hole is created
*	at index 5, then subsequently a hole is created at index 10,
*	radix_tree_next_hole covering both indexes may return 10 if called
*	under rcu_read_lock.
*/
unsigned long radix_tree_next_hole(struct radix_tree_root *root,
unsigned long index, unsigned long max_scan)
{
unsigned long i;

for (i = 0; i < max_scan; i++) {
if (!radix_tree_lookup(root, index))
break;
index++;
if (index == 0)
break;
}

return index;
}
EXPORT_SYMBOL(radix_tree_next_hole);

/**
*	radix_tree_prev_hole    -    find the prev hole (not-present entry)
*	@root:		tree root
*	@index:		index key
*	@max_scan:	maximum range to search
*
*	Search backwards in the range [max(index-max_scan+1, 0), index]
*	for the first hole.
*
*	Returns: the index of the hole if found, otherwise returns an index
*	outside of the set specified (in which case 'index - return >= max_scan'
*	will be true). In rare cases of wrap-around, LONG_MAX will be returned.
*
*	radix_tree_next_hole may be called under rcu_read_lock. However, like
*	radix_tree_gang_lookup, this will not atomically search a snapshot of
*	the tree at a single point in time. For example, if a hole is created
*	at index 10, then subsequently a hole is created at index 5,
*	radix_tree_prev_hole covering both indexes may return 5 if called under
*	rcu_read_lock.
*/
unsigned long radix_tree_prev_hole(struct radix_tree_root *root,
unsigned long index, unsigned long max_scan)
{
unsigned long i;

for (i = 0; i < max_scan; i++) {
if (!radix_tree_lookup(root, index))
break;
index--;
if (index == LONG_MAX)
break;
}

return index;
}
EXPORT_SYMBOL(radix_tree_prev_hole);

static unsigned int
__lookup(struct radix_tree_node *slot, void ***results, unsigned long index,
unsigned int max_items, unsigned long *next_index)
{
unsigned int nr_found = 0;
unsigned int shift, height;
unsigned long i;

height = slot->height;
if (height == 0)
goto out;
shift = (height-1) * RADIX_TREE_MAP_SHIFT;

for ( ; height > 1; height--) {
i = (index >> shift) & RADIX_TREE_MAP_MASK;
for (;;) {
if (slot->slots[i] != NULL)
break;
index &= ~((1UL << shift) - 1);
index += 1UL << shift;
if (index == 0)
goto out;	/* 32-bit wraparound */
i++;
if (i == RADIX_TREE_MAP_SIZE)
goto out;
}

shift -= RADIX_TREE_MAP_SHIFT;
slot = rcu_dereference(slot->slots[i]);
if (slot == NULL)
goto out;
}

/* Bottom level: grab some items */
for (i = index & RADIX_TREE_MAP_MASK; i < RADIX_TREE_MAP_SIZE; i++) {
index++;
if (slot->slots[i]) {
results[nr_found++] = &(slot->slots[i]);
if (nr_found == max_items)
goto out;
}
}
out:
*next_index = index;
return nr_found;
}

/**
*	radix_tree_gang_lookup - perform multiple lookup on a radix tree
*	@root:		radix tree root
*	@results:	where the results of the lookup are placed
*	@first_index:	start the lookup from this key
*	@max_items:	place up to this many items at *results
*
*	Performs an index-ascending scan of the tree for present items.  Places
*	them at *@results and returns the number of items which were placed at
*	*@results.
*
*	The implementation is naive.
*
*	Like radix_tree_lookup, radix_tree_gang_lookup may be called under
*	rcu_read_lock. In this case, rather than the returned results being
*	an atomic snapshot of the tree at a single point in time, the semantics
*	of an RCU protected gang lookup are as though multiple radix_tree_lookups
*	have been issued in individual locks, and results stored in 'results'.
*/
unsigned int
radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
unsigned long first_index, unsigned int max_items)
{
unsigned long max_index;
struct radix_tree_node *node;
unsigned long cur_index = first_index;
unsigned int ret;

node = rcu_dereference(root->rnode);
if (!node)
return 0;

if (!radix_tree_is_indirect_ptr(node)) {
if (first_index > 0)
return 0;
results[0] = node;
return 1;
}
node = radix_tree_indirect_to_ptr(node);

max_index = radix_tree_maxindex(node->height);

ret = 0;
while (ret < max_items) {
unsigned int nr_found, slots_found, i;
unsigned long next_index;	/* Index of next search */

if (cur_index > max_index)
break;
slots_found = __lookup(node, (void ***)results + ret, cur_index,
max_items - ret, &next_index);
nr_found = 0;
for (i = 0; i < slots_found; i++) {
struct radix_tree_node *slot;
slot = *(((void ***)results)[ret + i]);
if (!slot)
continue;
results[ret + nr_found] = rcu_dereference(slot);
nr_found++;
}
ret += nr_found;
if (next_index == 0)
break;
cur_index = next_index;
}

return ret;
}
EXPORT_SYMBOL(radix_tree_gang_lookup);

/**
*	radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
*	@root:		radix tree root
*	@results:	where the results of the lookup are placed
*	@first_index:	start the lookup from this key
*	@max_items:	place up to this many items at *results
*
*	Performs an index-ascending scan of the tree for present items.  Places
*	their slots at *@results and returns the number of items which were
*	placed at *@results.
*
*	The implementation is naive.
*
*	Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
*	be dereferenced with radix_tree_deref_slot, and if using only RCU
*	protection, radix_tree_deref_slot may fail requiring a retry.
*/
unsigned int
radix_tree_gang_lookup_slot(struct radix_tree_root *root, void ***results,
unsigned long first_index, unsigned int max_items)
{
unsigned long max_index;
struct radix_tree_node *node;
unsigned long cur_index = first_index;
unsigned int ret;

node = rcu_dereference(root->rnode);
if (!node)
return 0;

if (!radix_tree_is_indirect_ptr(node)) {
if (first_index > 0)
return 0;
results[0] = (void **)&root->rnode;
return 1;
}
node = radix_tree_indirect_to_ptr(node);

max_index = radix_tree_maxindex(node->height);

ret = 0;
while (ret < max_items) {
unsigned int slots_found;
unsigned long next_index;	/* Index of next search */

if (cur_index > max_index)
break;
slots_found = __lookup(node, results + ret, cur_index,
max_items - ret, &next_index);
ret += slots_found;
if (next_index == 0)
break;
cur_index = next_index;
}

return ret;
}
EXPORT_SYMBOL(radix_tree_gang_lookup_slot);

/*
* FIXME: the two tag_get()s here should use find_next_bit() instead of
* open-coding the search.
*/
static unsigned int
__lookup_tag(struct radix_tree_node *slot, void ***results, unsigned long index,
unsigned int max_items, unsigned long *next_index, unsigned int tag)
{
unsigned int nr_found = 0;
unsigned int shift, height;

height = slot->height;
if (height == 0)
goto out;
shift = (height-1) * RADIX_TREE_MAP_SHIFT;

while (height > 0) {
unsigned long i = (index >> shift) & RADIX_TREE_MAP_MASK ;

for (;;) {
if (tag_get(slot, tag, i))
break;
index &= ~((1UL << shift) - 1);
index += 1UL << shift;
if (index == 0)
goto out;	/* 32-bit wraparound */
i++;
if (i == RADIX_TREE_MAP_SIZE)
goto out;
}
height--;
if (height == 0) {	/* Bottom level: grab some items */
unsigned long j = index & RADIX_TREE_MAP_MASK;

for ( ; j < RADIX_TREE_MAP_SIZE; j++) {
index++;
if (!tag_get(slot, tag, j))
continue;
/*
* Even though the tag was found set, we need to
* recheck that we have a non-NULL node, because
* if this lookup is lockless, it may have been
* subsequently deleted.
*
* Similar care must be taken in any place that
* lookup ->slots[x] without a lock (ie. can't
* rely on its value remaining the same).
*/
if (slot->slots[j]) {
results[nr_found++] = &(slot->slots[j]);
if (nr_found == max_items)
goto out;
}
}
}
shift -= RADIX_TREE_MAP_SHIFT;
slot = rcu_dereference(slot->slots[i]);
if (slot == NULL)
break;
}
out:
*next_index = index;
return nr_found;
}

/**
*	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
*	                             based on a tag
*	@root:		radix tree root
*	@results:	where the results of the lookup are placed
*	@first_index:	start the lookup from this key
*	@max_items:	place up to this many items at *results
*	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
*
*	Performs an index-ascending scan of the tree for present items which
*	have the tag indexed by @tag set.
bde9
Places the items at *@results and
*	returns the number of items which were placed at *@results.
*/
unsigned int
radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
unsigned long first_index, unsigned int max_items,
unsigned int tag)
{
struct radix_tree_node *node;
unsigned long max_index;
unsigned long cur_index = first_index;
unsigned int ret;

/* check the root's tag bit */
if (!root_tag_get(root, tag))
return 0;

node = rcu_dereference(root->rnode);
if (!node)
return 0;

if (!radix_tree_is_indirect_ptr(node)) {
if (first_index > 0)
return 0;
results[0] = node;
return 1;
}
node = radix_tree_indirect_to_ptr(node);

max_index = radix_tree_maxindex(node->height);

ret = 0;
while (ret < max_items) {
unsigned int nr_found, slots_found, i;
unsigned long next_index;	/* Index of next search */

if (cur_index > max_index)
break;
slots_found = __lookup_tag(node, (void ***)results + ret,
cur_index, max_items - ret, &next_index, tag);
nr_found = 0;
for (i = 0; i < slots_found; i++) {
struct radix_tree_node *slot;
slot = *(((void ***)results)[ret + i]);
if (!slot)
continue;
results[ret + nr_found] = rcu_dereference(slot);
nr_found++;
}
ret += nr_found;
if (next_index == 0)
break;
cur_index = next_index;
}

return ret;
}
EXPORT_SYMBOL(radix_tree_gang_lookup_tag);

/**
*	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
*					  radix tree based on a tag
*	@root:		radix tree root
*	@results:	where the results of the lookup are placed
*	@first_index:	start the lookup from this key
*	@max_items:	place up to this many items at *results
*	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
*
*	Performs an index-ascending scan of the tree for present items which
*	have the tag indexed by @tag set.  Places the slots at *@results and
*	returns the number of slots which were placed at *@results.
*/
unsigned int
radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
unsigned long first_index, unsigned int max_items,
unsigned int tag)
{
struct radix_tree_node *node;
unsigned long max_index;
unsigned long cur_index = first_index;
unsigned int ret;

/* check the root's tag bit */
if (!root_tag_get(root, tag))
return 0;

node = rcu_dereference(root->rnode);
if (!node)
return 0;

if (!radix_tree_is_indirect_ptr(node)) {
if (first_index > 0)
return 0;
results[0] = (void **)&root->rnode;
return 1;
}
node = radix_tree_indirect_to_ptr(node);

max_index = radix_tree_maxindex(node->height);

ret = 0;
while (ret < max_items) {
unsigned int slots_found;
unsigned long next_index;	/* Index of next search */

if (cur_index > max_index)
break;
slots_found = __lookup_tag(node, results + ret,
cur_index, max_items - ret, &next_index, tag);
ret += slots_found;
if (next_index == 0)
break;
cur_index = next_index;
}

return ret;
}
EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);

/**
*	radix_tree_shrink    -    shrink height of a radix tree to minimal
*	@root		radix tree root
*/
static inline void radix_tree_shrink(struct radix_tree_root *root)
{
/* try to shrink tree height */
while (root->height > 0) {
struct radix_tree_node *to_free = root->rnode;
void *newptr;

BUG_ON(!radix_tree_is_indirect_ptr(to_free));
to_free = radix_tree_indirect_to_ptr(to_free);

/*
* The candidate node has more than one child, or its child
* is not at the leftmost slot, we cannot shrink.
*/
if (to_free->count != 1)
break;
if (!to_free->slots[0])
break;

/*
* We don't need rcu_assign_pointer(), since we are simply
* moving the node from one part of the tree to another. If
* it was safe to dereference the old pointer to it
* (to_free->slots[0]), it will be safe to dereference the new
* one (root->rnode).
*/
newptr = to_free->slots[0];
if (root->height > 1)
newptr = radix_tree_ptr_to_indirect(newptr);
root->rnode = newptr;
root->height--;
radix_tree_node_free(to_free);
}
}

/**
*	radix_tree_delete    -    delete an item from a radix tree
*	@root:		radix tree root
*	@index:		index key
*
*	Remove the item at @index from the radix tree rooted at @root.
*
*	Returns the address of the deleted item, or NULL if it was not present.
*/
void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
{
/*
* The radix tree path needs to be one longer than the maximum path
* since the "list" is null terminated.
*/
struct radix_tree_path path[RADIX_TREE_MAX_PATH + 1], *pathp = path;
struct radix_tree_node *slot = NULL;
struct radix_tree_node *to_free;
unsigned int height, shift;
int tag;
int offset;

height = root->height;
if (index > radix_tree_maxindex(height))
goto out;

slot = root->rnode;
if (height == 0) {
root_tag_clear_all(root);
root->rnode = NULL;
goto out;
}
slot = radix_tree_indirect_to_ptr(slot);

shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
pathp->node = NULL;

do {
if (slot == NULL)
goto out;

pathp++;
offset = (index >> shift) & RADIX_TREE_MAP_MASK;
pathp->offset = offset;
pathp->node = slot;
slot = slot->slots[offset];
shift -= RADIX_TREE_MAP_SHIFT;
height--;
} while (height > 0);

if (slot == NULL)
goto out;

/*
* Clear all tags associated with the just-deleted item
*/
for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
if (tag_get(pathp->node, tag, pathp->offset))
radix_tree_tag_clear(root, index, tag);
}

to_free = NULL;
/* Now free the nodes we do not need anymore */
while (pathp->node) {
pathp->node->slots[pathp->offset] = NULL;
pathp->node->count--;
/*
* Queue the node for deferred freeing after the
* last reference to it disappears (set NULL, above).
*/
if (to_free)
radix_tree_node_free(to_free);

if (pathp->node->count) {
if (pathp->node ==
radix_tree_indirect_to_ptr(root->rnode))
radix_tree_shrink(root);
goto out;
}

/* Node with zero slots in use so free it */
to_free = pathp->node;
pathp--;

}
root_tag_clear_all(root);
root->height = 0;
root->rnode = NULL;
if (to_free)
radix_tree_node_free(to_free);

out:
return slot;
}
EXPORT_SYMBOL(radix_tree_delete);

/**
*	radix_tree_tagged - test whether any items in the tree are tagged
*	@root:		radix tree root
*	@tag:		tag to test
*/
int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
{
return root_tag_get(root, tag);
}
EXPORT_SYMBOL(radix_tree_tagged);

static void
radix_tree_node_ctor(void *node)
{
memset(node, 0, sizeof(struct radix_tree_node));
}

static __init unsigned long __maxindex(unsigned int height)
{
unsigned int width = height * RADIX_TREE_MAP_SHIFT;
int shift = RADIX_TREE_INDEX_BITS - width;

if (shift < 0)
return ~0UL;
if (shift >= BITS_PER_LONG)
return 0UL;
return ~0UL >> shift;
}

static __init void radix_tree_init_maxindex(void)
{
unsigned int i;

for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
height_to_maxindex[i] = __maxindex(i);
}

static int radix_tree_callback(struct notifier_block *nfb,
unsigned long action,
void *hcpu)
{
int cpu = (long)hcpu;
struct radix_tree_preload *rtp;

/* Free per-cpu pool of perloaded nodes */
if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
rtp = &per_cpu(radix_tree_preloads, cpu);
while (rtp->nr) {
kmem_cache_free(radix_tree_node_cachep,
rtp->nodes[rtp->nr-1]);
rtp->nodes[rtp->nr-1] = NULL;
rtp->nr--;
}
}
return NOTIFY_OK;
}

void __init radix_tree_init(void)
{
radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
sizeof(struct radix_tree_node), 0,
SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
radix_tree_node_ctor);
radix_tree_init_maxindex();
hotcpu_notifier(radix_tree_callback, 0);
}

发大水发大水发大水发动机阿三发大水飞都阿斯顿发卡水电费辣椒水考虑到非

下面是源代码:

<script src="https://code.csdn.net/snippets/318593.js"></script>
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: