您的位置:首页 > 其它

SurfaceFlinger启动过程分析

2013-10-15 10:43 507 查看
转自:http://danielwood.cublog.cn转载时请注明出处和作者
文章出处:http://danielwood.cublog.cn
作者:Daniel Wood------------------------------------------------------------
以下将讲讲surfaceflinger的启动过程,可以结合启动过程图来了解。当然最关键是代码(Google
Android 2.2),因为我讲的难免有错误之处。由于工作需要,所以要了解surfaceflinger这一块,参考的资料也较多,已经无法追溯来源,所以参考文献如下:^_^
参考文献:
[1] www.baidu.com
[2] g.cn
[3] Android display架构分析系列http://hi.baidu.com/leowenj/blog/item/429c2dd6ac1480c851da4b95.html
[4] Android Display System --- Surface Flinger http://blog.csdn.net/yili_xie/archive/2009/11/12/4803527.aspx [5] Android核心分析系列 http://wsqhs.spaces.live.com/blog/cns!94F639580F58209C!668.entry
SurfaceFlinger的启动过程还是从Zygote说起。Zygote起来后会调用SystemServer.java[frameworks\base\services\java\com\android\server]里面的main函数,然后调用本地函数init1(),然后调用的是JNI的com_android_server_SystemServer.cpp里面的android_server_SystemServer_init1函数。
staticvoid android_server_SystemServer_init1(JNIEnv*
env, jobject clazz)

{

system_init();

}

然后调用
System_init.cpp[frameworks\base\cmds\system_server\library]的system_init函数,通过获取属性字段system_init.startsurfaceflinger,如果字段值为1,那么就在这里启动surfaceflinger。

char propBuf[PROPERTY_VALUE_MAX];
property_get("system_init.startsurfaceflinger", propBuf, "1");
if(strcmp(propBuf,"1")==
0){

// Start the SurfaceFlinger

SurfaceFlinger::instantiate();

}

然而,另一方面,有一个可执行文件surfaceflinger,由目录framework/base/cmds/surfaceflinger编译产生,目录下的主要文件main_surfaceflinger.cpp里面就一个main函数:
int main(int argc,char**
argv)

{

sp<ProcessState> proc(ProcessState::self());

sp<IServiceManager> sm= defaultServiceManager();

LOGI("ServiceManager: %p", sm.get());

SurfaceFlinger::instantiate();

ProcessState::self()->startThreadPool();

IPCThreadState::self()->joinThreadPool();

}

以上两者都会调用SurfaceFlinger.cpp文件的instantiate函数。
void SurfaceFlinger::instantiate(){

defaultServiceManager()->addService(

String16("SurfaceFlinger"),new SurfaceFlinger());

}

如果你想在可执行文件中启动SurfaceFlinger,那么你可以在init.rc文件中增加类似如下语句:
service surfaceflinger /system/bin/surfaceflinger

user root

onrestart restart zygote

disabled

当然你也必须设置属性字段system_init.startsurfaceflinger为0,这个工作可以在init.rc中完成。
setprop system_init.startsurfaceflinger 0

surfaceflinger构造函数调用init()函数【surfaceflinger.cpp】,init函数主要打印"SurfaceFlinger
is starting"的Log信息,并且对一些debug属性进行配置。surfaceflinger构造函数调用readyToRun函数【surfaceflinger.cpp】,至于为什么会调用readyToRun函数(并没有显式的调用语句),主要是因为surfaceflinger是一个线程类,必须实现并会调用如下两个函数:一是readyToRun(),该函数定义了线程循环前需要初始化的内容;二是threadLoop(),每个线程都必须实现,该函数定义了线程执行的内容,如果该函数返回true,线程会继续调用threadLoop(),如果返回false,线程将退出。-->选自参考文献。上节说到SurfaceFlinger的readyToRun函数。先来看看它的代码:
(Google Android 2.2)
SurfaceFlinger.cpp
status_t SurfaceFlinger::readyToRun()

{

LOGI( "SurfaceFlinger's main thread ready to run. "

"Initializing graphics H/W...");

// we only support one display currently

int dpy = 0;

{

// initialize the main display

GraphicPlane& plane(graphicPlane(dpy));

DisplayHardware* const hw = new DisplayHardware(this, dpy);

plane.setDisplayHardware(hw);

}

// create the shared control-block

mServerHeap =
new MemoryHeapBase(4096,

MemoryHeapBase::READ_ONLY,"SurfaceFlinger read-only heap");

LOGE_IF(mServerHeap==0,"can't create shared memory dealer");

mServerCblk =
static_cast<surface_flinger_cblk_t*>(mServerHeap->getBase());

LOGE_IF(mServerCblk==0,"can't get to shared control block's address");

new(mServerCblk) surface_flinger_cblk_t;

// initialize primary screen

// (other display should be initialized in the same manner, but

// asynchronously, as they could come and go. None of this is supported

// yet).

const GraphicPlane& plane(graphicPlane(dpy));

const DisplayHardware& hw= plane.displayHardware();

const uint32_t w= hw.getWidth();

const uint32_t h= hw.getHeight();

const uint32_t f= hw.getFormat();

hw.makeCurrent();

// initialize the shared control block

mServerCblk->connected|= 1<<dpy;

display_cblk_t* dcblk
= mServerCblk->displays+ dpy;

memset(dcblk, 0,sizeof(display_cblk_t));

dcblk->w= plane.getWidth();

dcblk->h= plane.getHeight();

dcblk->format= f;

dcblk->orientation= ISurfaceComposer::eOrientationDefault;

dcblk->xdpi= hw.getDpiX();

dcblk->ydpi= hw.getDpiY();

dcblk->fps= hw.getRefreshRate();

dcblk->density= hw.getDensity();

asm volatile("":::"memory");

// Initialize OpenGL|ES

glActiveTexture(GL_TEXTURE0);

glBindTexture(GL_TEXTURE_2D, 0);

glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);

glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);

glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);

glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);

glPixelStorei(GL_UNPACK_ALIGNMENT, 4);

glPixelStorei(GL_PACK_ALIGNMENT, 4);

glEnableClientState(GL_VERTEX_ARRAY);

glEnable(GL_SCISSOR_TEST);

glShadeModel(GL_FLAT);

glDisable(GL_DITHER);

glDisable(GL_CULL_FACE);

const uint16_t g0= pack565(0x0F,0x1F,0x0F);

const uint16_t g1= pack565(0x17,0x2f,0x17);

const uint16_t textureData[4]=
{ g0, g1, g1, g0};

glGenTextures(1,&mWormholeTexName);

glBindTexture(GL_TEXTURE_2D, mWormholeTexName);

glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);

glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);

glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);

glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);

glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 2, 2,
0,

GL_RGB, GL_UNSIGNED_SHORT_5_6_5, textureData);

glViewport(0, 0, w, h);

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

glOrthof(0, w, h, 0, 0, 1);

LayerDim::initDimmer(this, w, h);

mReadyToRunBarrier.open();

/*

* We're now ready to accept clients...

*/

// start boot animation

property_set("ctl.start","bootanim");

return NO_ERROR;

}

调用readyToRun函数用于初始化整个显示系统。
readyToRun()调用过程如下[这部分摘自网上资料]:
(1)执行newDisplayHardware(this,dpy),通过DisplayHardware初始化Framebuffer、EGL并获取OpenGL
ES信息。
(2)创建共享的内存控制块。
(3)将EGL与当前屏幕绑定。
(4)初始化共享内存控制块。
(5)初始化OpenGL ES。
(6)显示开机动画。
上面的六点作为阅读代码的提纲及参考,下面对照代码进行分析:
(1)创建一个DisplayHardware,通过它的init函数去初始化Framebuffer、EGL并获取OpenGL
ES信息。
DisplayHardware.cpp[frameworks\base\libs\surfaceflinger\displayhardware]
DisplayHardware::DisplayHardware(

const sp<SurfaceFlinger>& flinger,

uint32_t dpy)

: DisplayHardwareBase(flinger, dpy)

{

init(dpy);

}

init函数的代码狠长,我们一块一块,一句一句地分析:
void DisplayHardware::init(uint32_t
dpy)

{

mNativeWindow =
new FramebufferNativeWindow();

...
首先亮相的是第一句(如上),new一个FramebufferNativeWindow。
FramebufferNativeWindow构造函数的代码也不少,我们去掉一些次要的代码,挑重要的关键的说:
FramebufferNativeWindow::FramebufferNativeWindow()

: BASE(), fbDev(0),
grDev(0), mUpdateOnDemand(false)

{

hw_module_t const* module;

if (hw_get_module(GRALLOC_HARDWARE_MODULE_ID,&module)
== 0){

int stride;

int err;

err
= framebuffer_open(module,&fbDev);

LOGE_IF(err,"couldn't open framebuffer HAL (%s)",strerror(-err));

err
= gralloc_open(module,&grDev);

LOGE_IF(err,"couldn't open gralloc HAL (%s)",strerror(-err));

// bail out if we can't initialize the modules

if (!fbDev||
!grDev)

return;

mUpdateOnDemand =
(fbDev->setUpdateRect!= 0);

// initialize the buffer FIFO

mNumBuffers = 2;

mNumFreeBuffers = 2;

mBufferHead = mNumBuffers-1;

buffers[0]=
new NativeBuffer(

fbDev->width, fbDev->height, fbDev->format,
GRALLOC_USAGE_HW_FB);

buffers[1]=
new NativeBuffer(

fbDev->width, fbDev->height, fbDev->format,
GRALLOC_USAGE_HW_FB);

err =
grDev->alloc(grDev,

fbDev->width, fbDev->height, fbDev->format,

GRALLOC_USAGE_HW_FB,
&buffers[0]->handle,&buffers[0]->stride);

LOGE_IF(err,"fb buffer 0 allocation failed w=%d, h=%d, err=%s",fbDev->width,
fbDev->height,strerror(-err));

err =
grDev->alloc(grDev,

fbDev->width, fbDev->height, fbDev->format,

GRALLOC_USAGE_HW_FB,
&buffers[1]->handle,&buffers[1]->stride);

LOGE_IF(err,"fb buffer 1 allocation failed w=%d, h=%d, err=%s",fbDev->width,
fbDev->height,strerror(-err));

...

} else
{

LOGE("Couldn't get gralloc module");

}

...

}

关键的代码都被我高亮了,从最后一行的else的LOGE中可以看出这里主要是获得gralloc这个模块。模块ID定义在:gralloc.h[hardware\libhardware\include\hardware]
#define GRALLOC_HARDWARE_MODULE_ID "gralloc"

ps:有时候代码中的log狠有用,可以帮助我们读懂代码,而且logcat也是我们调试代码的好东西。
首先打开framebuffer和gralloc这两个模块
framebuffer_open和gralloc_open这两个接口在gralloc.h里面定义
staticinline
int framebuffer_open(conststruct hw_module_t*
module,

struct framebuffer_device_t** device){

return module->methods->open(module,

GRALLOC_HARDWARE_FB0,(struct hw_device_t**)device);

}

static inlineint
gralloc_open(conststruct hw_module_t* module,

struct alloc_device_t** device){

return module->methods->open(module,

GRALLOC_HARDWARE_GPU0,(struct hw_device_t**)device);

}

两者指定的是gralloc.cpp中同一个函数gralloc_device_open,但是用的是不同的设备名,函数名和设备名分别在gralloc.cpp和gralloc.h中定义。
gralloc.h[hardware\libhardware\include\hardware]

#define GRALLOC_HARDWARE_FB0"fb0"

#define GRALLOC_HARDWARE_GPU0"gpu0"

gralloc.cpp[hardware\libhardware\modules\gralloc]

static struct hw_module_methods_t gralloc_module_methods=
{

open: gralloc_device_open

};

gralloc.cpp[hardware\libhardware\modules\gralloc]
intgralloc_device_open(const
hw_module_t* module,const
char* name,

hw_device_t** device)

{

int status =-EINVAL;

if (!strcmp(name, GRALLOC_HARDWARE_GPU0)){

gralloc_context_t *dev;

dev = (gralloc_context_t*)malloc(sizeof(*dev));

/* initialize our state here */

memset(dev, 0,sizeof(*dev));

/* initialize the procs */

dev->device.common.tag= HARDWARE_DEVICE_TAG;

dev->device.common.version= 0;

dev->device.common.module=
const_cast<hw_module_t*>(module);

dev->device.common.close= gralloc_close;

dev->device.alloc= gralloc_alloc;

dev->device.free= gralloc_free;

*device =&dev->device.common;

status = 0;

} else
{

status = fb_device_open(module, name, device);

}

return status;

}

gralloc_device_open函数通过设备名字来进行相关的初始化工作。打开framebuffer则调用fb_device_open函数。fb_device_open函数定义在framebuffer.cpp中。
int fb_device_open(hw_module_tconst*
module,const
char* name,

hw_device_t** device)

{

int status =-EINVAL;

if (!strcmp(name, GRALLOC_HARDWARE_FB0)){

alloc_device_t* gralloc_device;

status =
gralloc_open(module,&gralloc_device);

if (status< 0)

return status;

/* initialize our state here */

fb_context_t *dev
= (fb_context_t*)malloc(sizeof(*dev));

memset(dev, 0,sizeof(*dev));

/* initialize the procs */

dev->device.common.tag= HARDWARE_DEVICE_TAG;

dev->device.common.version= 0;

dev->device.common.module=
const_cast<hw_module_t*>(module);

dev->device.common.close= fb_close;

dev->device.setSwapInterval= fb_setSwapInterval;

dev->device.post= fb_post;

dev->device.setUpdateRect= 0;

private_module_t* m
= (private_module_t*)module;

status =
mapFrameBuffer(m);

if (status>= 0){

...

*device
= &dev->device.common;

}

}

return status;

}

fb_device_open函数是framebuffer.cpp里面的函数它会再次调用gralloc_open函数,调用gralloc_open并没有什么实际的用途,只是检测模块的正确性,感觉这句话没有必要,还是我哪里理解错了???因为gralloc_device这个变量在后面都没有用到啊。
哈哈,经过测试,把以下几句注释掉,然后make,烧到手机上,手机基本功能仍旧正常,看来这几句代码狠有可能是没有什么特别用处的。
alloc_device_t* gralloc_device;

status = gralloc_open(module, &gralloc_device);

if (status < 0)

return status;

然后调用mapFrameBuffer函数,就是将显示缓冲区映射到用户空间,这样在用户空间就可以直接对显示缓冲区进行读写操作。mapFrameBuffer函数的主体功能是在mapFrameBufferLocked函数里面完成的。
关于mapFrameBuffer函数,在下节讲解。内存映射对于framebuffer来说非常重要,因为通常用户是不能直接操作物理地址空间的(也就是物理内存?),然而通过mmap映射之后,将framebuffer的物理地址空间映射到用户空间的一段虚拟地址中,用户就可以通过操作这段虚拟内存而间接操作framebuffer了,你在那段虚拟内存中画了图,相应的图就会显示到屏幕上。
——这段是自己的理解,有错必究!
下面是framebuffer.cpp中的mapFrameBufferLocked函数。
int mapFrameBufferLocked(struct private_module_t*
module)

{

// already initialized...

if (module->framebuffer){

return 0;

}

char const*
const device_template[]=
{

"/dev/graphics/fb%u",

"/dev/fb%u",

0 };

int fd =-1;

int i=0;

char name[64];

while ((fd==-1)&&
device_template[i]){

snprintf(name, 64, device_template[i],
0);

fd
= open(name, O_RDWR, 0);

i++;

}

if (fd
< 0)

return -errno;

struct fb_fix_screeninfo finfo;

if (ioctl(fd, FBIOGET_FSCREENINFO,&finfo)==
-1)

return -errno;

struct fb_var_screeninfo info;

if (ioctl(fd, FBIOGET_VSCREENINFO,&info)==
-1)

return -errno;

info.reserved[0]= 0;

info.reserved[1]= 0;

info.reserved[2]= 0;

info.xoffset = 0;

info.yoffset = 0;

info.activate
= FB_ACTIVATE_NOW;

/*

* Explicitly request 5/6/5

*/

info.bits_per_pixel
= 16;

info.red.offset= 11;

info.red.length= 5;

info.green.offset= 5;

info.green.length= 6;

info.blue.offset= 0;

info.blue.length= 5;

info.transp.offset= 0;

info.transp.length= 0;

/*

* Request NUM_BUFFERS screens (at lest 2 for page flipping)

*/

info.yres_virtual
= info.yres
* NUM_BUFFERS;

uint32_t flags
= PAGE_FLIP;

if (ioctl(fd, FBIOPUT_VSCREENINFO,&info)==
-1)
{

info.yres_virtual
= info.yres;

flags &=~PAGE_FLIP;

LOGW("FBIOPUT_VSCREENINFO failed, page flipping not supported");

}

if (info.yres_virtual< info.yres* 2)
{

// we need at least 2 for page-flipping

info.yres_virtual
= info.yres;

flags &=~PAGE_FLIP;

LOGW("page flipping not supported (yres_virtual=%d, requested=%d)",

info.yres_virtual, info.yres*2);

}

if (ioctl(fd, FBIOGET_VSCREENINFO,&info)==
-1)

return -errno;

int refreshRate
= 1000000000000000LLU /

(

uint64_t( info.upper_margin+ info.lower_margin+
info.yres)

* ( info.left_margin+ info.right_margin+
info.xres)

* info.pixclock

);

if (refreshRate== 0){

// bleagh, bad info from the driver

refreshRate = 60*1000;// 60 Hz

}

if (int(info.width)<=
0 ||
int(info.height)<= 0){

// the driver doesn't return that information

// default to 160 dpi

info.width
= ((info.xres* 25.4f)/160.0f+
0.5f);

info.height
= ((info.yres* 25.4f)/160.0f+
0.5f);

}

float xdpi =(info.xres
* 25.4f)/ info.width;

float ydpi =(info.yres
* 25.4f)/ info.height;

float fps = refreshRate/ 1000.0f;

LOGI( "using (fd=%d)\n"

"id = %s\n"

"xres = %d px\n"

"yres = %d px\n"

"xres_virtual = %d px\n"

"yres_virtual = %d px\n"

"bpp = %d\n"

"r = %2u:%u\n"

"g = %2u:%u\n"

"b = %2u:%u\n",

fd,

finfo.id,

info.xres,

info.yres,

info.xres_virtual,

info.yres_virtual,

info.bits_per_pixel,

info.red.offset, info.red.length,

info.green.offset, info.green.length,

info.blue.offset, info.blue.length

);

LOGI( "width = %d mm (%f dpi)\n"

"height = %d mm (%f dpi)\n"

"refresh rate = %.2f Hz\n",

info.width, xdpi,

info.height, ydpi,

fps

);

if (ioctl(fd, FBIOGET_FSCREENINFO,&finfo)==
-1)

return -errno;

if (finfo.smem_len<= 0)

return -errno;

module->flags= flags;

module->info= info;

module->finfo= finfo;

module->xdpi= xdpi;

module->ydpi= ydpi;

module->fps= fps;

/*

* map the framebuffer

*/

int err;

size_t fbSize
= roundUpToPageSize(finfo.line_length* info.yres_virtual);//对齐页

module->framebuffer=
new private_handle_t(dup(fd), fbSize, 0);

module->numBuffers= info.yres_virtual/ info.yres;

module->bufferMask= 0;

void* vaddr=
mmap(0, fbSize, PROT_READ|PROT_WRITE,
MAP_SHARED, fd, 0);

if (vaddr== MAP_FAILED){

LOGE("Error mapping the framebuffer (%s)",strerror(errno));

return -errno;

}

module->framebuffer->base=
intptr_t(vaddr);

memset(vaddr, 0, fbSize);

return 0;

}

这个函数就是和驱动相关的调用,其实结合驱动去看代码是很有意思的,把一路都打通了。
该函数首先通过open函数打开设备结点。
"/dev/graphics/fb%u"和"/dev/fb%u",如果前一个顺利打开的话,那么就不打开第二个。我的Log显示打开的是第一个设备结点/dev/graphics/fb%u。
然后通过ioctl读取设备的固定参数(FBIOGET_FSCREENINFO)和可变参数(FBIOGET_VSCREENINFO)。
【kernel部分的代码在drivers\video\fbmem.c中。】
然后对可变参数进行修改,通过ioctl设置(FBIOPUT_VSCREENINFO)显示屏的可变参数。
设置好以后再ioctl-FBIOGET_VSCREENINFO获得可变参数,然后在log上打出显示屏的各个参数设置,也就是我们开机看到的一长串log。
I/gralloc( 1620): using(fd=8)

I/gralloc ( 1620): id= truly-ILI9327

I/gralloc ( 1620): xres= 240 px

I/gralloc ( 1620): yres= 400 px

I/gralloc ( 1620): xres_virtual= 240 px

I/gralloc ( 1620): yres_virtual= 800 px

I/gralloc ( 1620): bpp= 16

I/gralloc ( 1620): r= 11:5

I/gralloc ( 1620): g= 5:6

I/gralloc ( 1620): b= 0:5

I/gralloc ( 1620):width
= 38 mm(160.421051 dpi)

I/gralloc ( 1620): height= 64 mm
(158.750000 dpi)

I/gralloc ( 1620): refresh rate= 60.00 Hz

然后通过mmap完成对显示缓存区的映射。这样mapFrameBufferLocked函数的任务算是完成了。
好了,以上所讲的只是(1)中的第一句话而已
Displayhardware.cpp中的init函数。
mNativeWindow=
new FramebufferNativeWindow();

在加载完framebuffer和gralloc模块之后,我们来看FramebufferNativeWindow构造函数中的代码:
buffers[0]=
new NativeBuffer(

fbDev->width, fbDev->height, fbDev->format,
GRALLOC_USAGE_HW_FB);

buffers[1]
= new NativeBuffer(

fbDev->width, fbDev->height, fbDev->format,
GRALLOC_USAGE_HW_FB);

err =
grDev->alloc(grDev,

fbDev->width, fbDev->height, fbDev->format,

GRALLOC_USAGE_HW_FB,
&buffers[0]->handle,&buffers[0]->stride);

LOGE_IF(err,"fb buffer 0 allocation failed w=%d, h=%d, err=%s", fbDev->width,
fbDev->height,strerror(-err));

err =
grDev->alloc(grDev,

fbDev->width, fbDev->height, fbDev->format,

GRALLOC_USAGE_HW_FB,
&buffers[1]->handle,&buffers[1]->stride);

LOGE_IF(err,"fb buffer 1 allocation failed w=%d, h=%d, err=%s",fbDev->width,
fbDev->height,strerror(-err));

该构造函数中关键的就剩下这四句高亮代码了,这四句也是framebuffer双缓存机制的关键。
首先新建了两个NativeBuffer,然后通过grDev为它们分配内存空间。这个grDev就是上面gralloc_open的gralloc设备模块。grDev->alloc这个函数在gralloc_device_open函数里面指定了是gralloc.cpp中的gralloc_alloc函数。
dev->device.alloc=
gralloc_alloc;

为两个缓冲区分配完内存之后,FramebufferNativeWindow构造函数的事情就算完了。下面继续看DisplayHardware.cpp中init函数接下去的代码。
DisplayHardware.cpp
if(hw_get_module(OVERLAY_HARDWARE_MODULE_ID,&module)==
0){

overlay_control_open(module,&mOverlayEngine);

}

// initialize EGL

...

接下去就获得overlay模块,前提是你的设备支持overlay。
然后就初始化EGL。DisplayHardware.cpp
EGLDisplay display=
eglGetDisplay(EGL_DEFAULT_DISPLAY);

eglInitialize(display,NULL,
NULL);

eglGetConfigs(display,NULL, 0,&numConfigs);

EGLConfig config;

status_t err = EGLUtils::selectConfigForNativeWindow(

display, attribs, mNativeWindow.get(),&config);

eglGetDisplay是EGL用来获取物理屏幕句柄的函数。返回的是EGLDisplay,代表一个物理显示设备。调用这个函数进入的是egl.cpp[frameworks\base\opengl\libs\egl]
EGLDisplayeglGetDisplay(NativeDisplayType display)

{

uint32_t index
= uint32_t(display);

if (index>= NUM_DISPLAYS){

return setError(EGL_BAD_PARAMETER, EGL_NO_DISPLAY);

}

if (egl_init_drivers()==
EGL_FALSE){

return setError(EGL_BAD_PARAMETER, EGL_NO_DISPLAY);

}

EGLDisplay dpy = EGLDisplay(uintptr_t(display)+
1LU);

return dpy;

}

它会调用egl_init_drivers去初始化设备。
egl_init_drivers->egl_init_drivers_locked
下面简单贴一下egl_init_drivers_locked代码:
EGLBoolean egl_init_drivers_locked()

{

if (sEarlyInitState){

// initialized by static ctor. should be set here.

return EGL_FALSE;

}

// get our driver loader

Loader& loader(Loader::getInstance());

cnx = &gEGLImpl[IMPL_SOFTWARE];

if (cnx->dso== 0){

cnx->hooks[GLESv1_INDEX]=
&gHooks[GLESv1_INDEX][IMPL_SOFTWARE];

cnx->hooks[GLESv2_INDEX]=
&gHooks[GLESv2_INDEX][IMPL_SOFTWARE];

cnx->dso
= loader.open(EGL_DEFAULT_DISPLAY, 0,
cnx);

if (cnx->dso){

EGLDisplay dpy = cnx->egl.eglGetDisplay(EGL_DEFAULT_DISPLAY);

LOGE_IF(dpy==EGL_NO_DISPLAY,"No EGLDisplay for software EGL!");

d->disp[IMPL_SOFTWARE].dpy= dpy;

if (dpy== EGL_NO_DISPLAY){

loader.close(cnx->dso);

cnx->dso=
NULL;

}

}

}

cnx = &gEGLImpl[IMPL_HARDWARE];

if (cnx->dso== 0){

...

} else{

LOGD("3D hardware acceleration is disabled");

}

}

return EGL_TRUE;

}

egl_init_drivers_locked()函数的作用就是填充gEGLImpl[IMPL_SOFTWARE]和gEGLImpl[IMPL_
HARDWARE]两个数组项。达到通过gEGLImpl[IMPL_SOFTWARE]和gEGLImpl[IMPL_ HARDWARE]两个数组项就可以调用libGLES_android.so库中所有函数的目的。
cnx->hooks[GLESv1_INDEX] = &gHooks[GLESv1_INDEX][IMPL_SOFTWARE];

cnx->hooks[GLESv2_INDEX] = &gHooks[GLESv2_INDEX][IMPL_SOFTWARE];


上面这两句代码的作用是引用赋值,在loader.open完以后,
cnx->hooks[GLESv1_INDEX]会被赋值,而相对应的
gHooks[GLESv1_INDEX][IMPL_SOFTWARE]也会被赋值。Loader的构造函数先从/system/lib/egl/egl.cfg中读取配置,如果不存在,那就选用默认配置。
Loader::Loader(){char line[256];char tag[256];FILE* cfg=
fopen("/system/lib/egl/egl.cfg","r");if (cfg==
NULL)
{// default configLOGD("egl.cfg not found, using default config");gConfig.add( entry_t(0, 0,"android")
);} else
{while (fgets(line, 256,
cfg))
{int dpy;int impl;if (sscanf(line,"%u
%u %s",&dpy,
&impl, tag)== 3){//LOGD(">>> %u %u %s", dpy, impl, tag);gConfig.add( entry_t(dpy, impl, tag));}}fclose(cfg);}}

默认的配置为(0, 0, "android")并把它放在gConfig中,以备在调用Loader.open的时候使用。
void* Loader::open(EGLNativeDisplayType
display, int impl, egl_connection_t* cnx){/** TODO: if we don't find display/0, then use 0/0* (0/0 should always work)*/void* dso;char path[PATH_MAX];int index =int(display);driver_t* hnd
= 0;const char*const format
="/system/lib/egl/lib%s_%s.so";char const* tag=
getTag(index, impl);if (tag){snprintf(path, PATH_MAX, format,"GLES",
tag);dso =
load_driver(path, cnx, EGL| GLESv1_CM
| GLESv2);if (dso){hnd =
new driver_t(dso);} else{// Always load EGL firstsnprintf(path, PATH_MAX, format,"EGL",
tag);dso = load_driver(path, cnx, EGL);if (dso){hnd =
new driver_t(dso);// TODO: make this more automatedsnprintf(path, PATH_MAX, format,"GLESv1_CM",
tag);hnd->set( load_driver(path, cnx,
GLESv1_CM), GLESv1_CM);snprintf(path, PATH_MAX, format,"GLESv2",
tag);hnd->set( load_driver(path, cnx,
GLESv2), GLESv2);}}}LOG_FATAL_IF(!index&&
!impl &&!hnd,"couldn't find the default OpenGL ES implementation ""for default display");return (void*)hnd;}

Loader::open这个函数首先去加载/system/lib/egl/libGLES_android.so,如果加载成功,那么对EGL
| GLESv1_CM | GLESv2三个函数库,进行初始化。如果加载不成功,那么就加载libEGL_android.so,libGLESv1_CM_android.so,libGLESv2_android.so这三个库,事实上我们的/system/lib/egl目录下面只有libGLES_android.so这一个库,所以加载libGLES_android.so库。Ps:libEGL.so,libGLESv1_CM.so,libGLESv2.so三个库在/system/lib目录下面。
下面简单地分析下EGL的配置。首先在Loader的构造函数中获取了EGL的配置信息0,
0, "android",然后把它放在一个结构体中,这个结构体名为entry_t,定义如下
struct entry_t{entry_t(){
}entry_t(int dpy,int impl,
const char* tag);int dpy;int impl;String8 tag;};

随后在Loader::open中调用getTag(index, impl),其实为getTag(0,
0)。所以getTag返回的是字符串android。
constchar* Loader::getTag(int
dpy,int impl){const Vector<entry_t>& cfgs(gConfig);const size_t c= cfgs.size();for (size_t i=0; i<c
; i++){if (dpy== cfgs[i].dpy)if (impl== cfgs[i].impl)return cfgs[i].tag.string();}return 0;}

现在有了库的路径path = /system/lib/egl/libGLES_android.so,通过load_driver函数来加载函数库。

Loader::load_driver

void*Loader::load_driver(constchar*
driver_absolute_path,egl_connection_t* cnx,uint32_t mask){if (access(driver_absolute_path, R_OK)){// this happens often, we don't want to log an errorreturn 0;}//加载libGLES_android.sovoid* dso
= dlopen(driver_absolute_path, RTLD_NOW| RTLD_LOCAL);if (dso== 0){const char* err= dlerror();LOGE("load_driver(%s): %s", driver_absolute_path, err?err:"unknown");return 0;}LOGD("loaded %s", driver_absolute_path);if (mask& EGL)
{//加载EGL函数库getProcAddress =
(getProcAddressType)dlsym(dso,"eglGetProcAddress");LOGE_IF(!getProcAddress,"can't find eglGetProcAddress() in %s", driver_absolute_path);egl_t* egl
= &cnx->egl;//把函数赋值到cnx->egl中__eglMustCastToProperFunctionPointerType* curr=(__eglMustCastToProperFunctionPointerType*)egl;char const*
const * api
= egl_names;while (*api){char const* name
= *api;__eglMustCastToProperFunctionPointerType f
=(__eglMustCastToProperFunctionPointerType)dlsym(dso, name);if (f==
NULL)
{// couldn't find the entry-point, use eglGetProcAddress()f = getProcAddress(name);if
(f ==NULL)
{f =
(__eglMustCastToProperFunctionPointerType)0;}}*curr++= f;api++;}}if (mask& GLESv1_CM){//加载GLESv1_CM函数库init_api(dso, gl_names,(__eglMustCastToProperFunctionPointerType*)&cnx->hooks[GLESv1_INDEX]->gl,getProcAddress);}if (mask& GLESv2)
{//加载GLESv2函数库init_api(dso, gl_names,(__eglMustCastToProperFunctionPointerType*)&cnx->hooks[GLESv2_INDEX]->gl,getProcAddress);}return dso;}

通过系统调用dlopen打开一个动态链接库。以下是百度百科对dlopen的解释:
dlopen()  功能:打开一个动态链接库  包含头文件:  #include <dlfcn.h>  函数定义:  void * dlopen( const char * pathname, int mode );  函数描述:  在dlopen的()函数以指定模式打开指定的动态连接库文件,并返回一个句柄给调用进程。使用dlclose()来卸载打开的库。


然后通过dlsym函数获得指向函数地址指针。以下是百度百科对dlsym的解释:
dlsym()的函数原型是  void* dlsym(void* handle,const char* symbol)  该函数在<dlfcn.h>文件中。  handle是由dlopen打开动态链接库后返回的指针,symbol就是要求获取的函数的名称,函数返回值是void*,指向函数的地址,供调用使用。

dlsym首先去得到eglGetProcAddress的函数指针,这个函数的原型:void (*eglGetProcAddress(const char *procname)) ();该函数的作用是返回由procname指定的扩展函数地址。
下面综述一下load_driver函数所做的工作:首先通过dlopen加载libGLES_android.so库,库所在路径为/system/lib/egl/libGLES_android.so,然后从libGLES_android.so库中提取EGL的各个API函数的地址放到cnx->egl中,从libGLES_android.so获取GLESv1_CM的API保存到cnx->hooks[GLESv1_INDEX]->gl中,从libGLES_android.so获取GLESv1_CM的API保存到cnx->hooks[GLESv2_INDEX]->gl。
提取EGLAPI地址的方法是首先通过dlsym函数获得一个获取函数地址的函数eglGetProcAddress的地址,然后遍历EGL的API所在文件frameworks/base/opengl/libs/EGL/egl_entries.in。先通过dlsym获取各个API地址,如果返回NULL再利用eglGetProcAddress去获得,如果依旧为空就把函数地址赋值为0;提取GLESv1_CM和GLESv1_CM库中函数地址方法和提取EGL差不多,只是他们的函数文件保存在frameworks/base/opengl/libs/entries.in中。还有它们把函数地址复制给了cnx->hooks[GLESv1_INDEX]->gl和cnx->hooks[GLESv2_INDEX]->gl。等加载完库以后在libs\egl\egl.cpp里面的egl_init_drivers_locked就通过cnx->egl.eglGetDisplay(EGL_DEFAULT_DISPLAY);调用eglGetDisplay函数,其实就是调用libGLES_android.so里面的eglGetDisplay函数,libGLES_android.so库是由目录frameworks/base/opengl/libagl生成的,所以libGLES_android.so里面的eglGetDisplay函数是文件libagl/egl.cpp里面的。
其实libs\egl\egl.cpp中的函数,大多是调用libGLES_android.so库里面的,是对其的一种封装,也就是说调用libagl/egl.cpp文件里面的同名函数,如eglGetDisplay,eglCreateWindowSurface,eglCreateContext等。因为libGLES_android.so库是由rameworks/base/opengl/libagl目录生成。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: