您的位置:首页 > 其它

Kinect for windows 开发入门 五:彩色数据获取和使用

2013-08-10 17:58 429 查看
背景知识

1.      WriteableBitmap之于Bitmap,就好像StringBuilder之于String。可以减少内存消耗。WriteableBitmap在初始化时需要指定高度,宽度和格式。上一节示例中,获取每帧图像都需要创建并初始化一个新的Bitmap,对GPU来说是一个极大的负担。用WriteableBitmap替代可以很大程度上提高性能。

2.      色彩数据流的解析式根据格式而定的。ColorImageFormat枚举用来指定格式。下表列出了支持的格式。简单的说支持四种颜色格式RGB,YUV,Bayer,Infrared;两种分辨率640*480,1280*960;最快支持30帧每秒;

ColorImageFormat

Description

含义

InfraredResolution640x480Fps30

16 bits, using the top 10 bits from a
PixelFormats.Gray16  format (with the 6 least significant bits always set to 0) whose resolution is  640 x 480 and frame rate is 30 frames per second.
Introduced in 1.6.

格式:红外(有亮度无彩色)

分辨率:640*480

最高频:30帧/秒

RawBayerResolution1280x960Fps12

Bayer data (8 bits per pixel, layout in alternating  pixels of red, green and blue) whose resolution is 1280 x 960 and frame rate  is 12 frames per second.
Introduced in 1.6.

格式:Bayer

分辨率:1280*960

最高频:12帧/秒

RawBayerResolution640x480Fps30

Bayer data (8 bits per pixel, layout in alternating  pixels of red, green and blue) whose resolution is 640 x 480 and frame rate  is 30 frames per second.
Introduced in 1.6.

格式:Bayer

分辨率:640*480

最高频:30帧/秒

RawYuvResolution640x480Fps15

Raw YUV data whose resolution is 640 x 480 and frame  rate is 15 frames per second.

格式:YUV

分辨率:640*480

最高频:15帧/秒

RgbResolution1280x960Fps12

RBG data whose resolution is 1280 x 960 and frame rate  is 12 frames per second.

格式:RGB

分辨率:1280*960

最高频:12帧/秒

RgbResolution640x480Fps30

RBG data whose resolution is 640 x 480 and frame rate is  30 frames per second.

格式:RGB

分辨率:640*480

最高频:30帧/秒

YuvResolution640x480Fps15

YUV data whose resolution is 640 x 480 and frame rate is  15 frames per second.

格式:YUV

分辨率:640*480

最高频:15帧/秒

Undefined

The format is not defined.

图像格式未定义

3.      示例中使用的颜色格式
4000
是Bgr32,每个像素占4个字节,每个字节8个位。第一个字节是蓝色通道,第二个是绿色,第三个是红色,第四个待用(表示像素的Alpha?或者透明度)。

4.      Stride是指图像中一行像素所占的字节(如RGB:width*height*BytesPerPixel=640*480*4).

5.      Stream会为每一帧图像加一个编号(不一定连续)和Timestamp。

6.      获取ColorStream有两种方式,主动和被动,示例中采用被动模式(多用),即被动的持续接受sensor传过来的信息;主动则是,根据需要定时地去获取,可参考“拉”的模式

7.      本示例展示了一些简单的图像处理。下面代码中以EditColor_开头的方法就是各种处理方法。

 

示例代码

        privateKinectSensor kinect;

        privateWriteableBitmapcolorImageBitmap;

        privateInt32RectcolorImageBitmapRect;

        privateint colorImageStride;

        privatebyte[] colorImagePixelData;

 

 

        // Get and set connected Kinect Sensor;

        publicKinectSensor Kinect

        {

            get

            {

                returnthis.kinect;

            }

 

            set

            {

                if (this.kinect
!= value)

                {

                    if (null
!= this.kinect)

                   {

                       UninitializeKinectSensor(this.kinect);

                       this.kinect=
null;

                   }

                }

 

                if (null
!= value &&
KinectStatus.Connected==
value.Status)

                {

                    this.kinect =
value;

                   InitializeKinectSensor(this.kinect);

                }

            }

        }

 

        // Bind color stream handler

        privatevoid InitializeKinectSensor(KinectSensorkinectSensor)

        {

            if (null
!= kinectSensor)

            {

                ColorImageStreamcolorStream = kinectSensor.ColorStream;

                colorStream.Enable();

 

                this.colorImageBitmap =
newWriteableBitmap(colorStream.FrameWidth,colorStream.FrameHeight, 96, 96,
PixelFormats.Bgr32,
null);

                this.colorImageBitmapRect =
newInt32Rect(0, 0,colorStream.FrameWidth, colorStream.FrameHeight);

                this.colorImageStride =colorStream.FrameWidth * colorStream.FrameBytesPerPixel;

               ColorImageElement.Source =
this.colorImageBitmap;

 

               kinectSensor.ColorFrameReady += kinectSensor_ColorFrameReady;

               kinectSensor.Start();

            }

        }

 

        privatevoid UninitializeKinectSensor(KinectSensorkinectSensor)

        {

            if (kinectSensor !=
null)

            {

               kinectSensor.Stop();

               kinectSensor.ColorFrameReady -=
newEventHandler<ColorImageFrameReadyEventArgs>(kinectSensor_ColorFrameReady);

            }

        }

 

        privatevoidkinectSensor_ColorFrameReady(object
sender, ColorImageFrameReadyEventArgs e)

        {

            // Use 'using' to dispose the frame after using.

            // 30 frame per second

            using (ColorImageFrame
frame =e.OpenColorImageFrame())

            {

                if (null
!= frame)

                {

                    byte[] pixelData =
newbyte[frame.PixelDataLength];

                   frame.CopyPixelDataTo(pixelData);

                   EditColor_HighSaturation(pixelData, frame.BytesPerPixel);

                    this.colorImageBitmap.WritePixels(this.colorImageBitmapRect,pixelData,
this.colorImageStride,0);

                }

            }

 

        }

 

        privatevoid EditColor_Inverted(byte[]
pixelData, int bytesPerPixel)

        {

            for (int
i = 0; i <pixelData.Length; i += bytesPerPixel)

            {

               pixelData[i] = 0x00;//Blue

               pixelData[i + 1] = 0x00;//Green

            }

        }

 

        privatevoid EditColor_Gray(byte[]
pixelData, int bytesPerPixel)

        {

            for (int
i = 0; i <pixelData.Length; i += bytesPerPixel)

            {

                byte gray =
Math.Max(pixelData[i],pixelData[i + 1]);

                gray=
Math.Max(gray,pixelData[i + 2]);

               pixelData[i] = gray;

               pixelData[i + 1] = gray;

               pixelData[i + 2] = gray;

            }

        }

 

        privatevoid EditColor_BlackWhite(byte[]
pixelData, int bytesPerPixel)

        {

            for (int
i = 0; i <pixelData.Length; i += bytesPerPixel)

            {

                byte gray =
Math.Min(pixelData[i], pixelData[i + 1]);

                gray=
Math.Min(gray,pixelData[i + 2]);

               pixelData[i] = gray;

               pixelData[i + 1] = gray;

               pixelData[i + 2] = gray;

            }

        }

 

        privatevoid EditColor_Apocalyptic(byte[]
pixelData, int bytesPerPixel)

        {

            for (int
i = 0; i <pixelData.Length; i += bytesPerPixel)

            {

               pixelData[i] = pixelData[i + 1];

               pixelData[i + 2] = (byte)~pixelData[i + 2];

            }

        }

 

        privatevoid EditColor_WashedOut(byte[]
pixelData, int bytesPerPixel)

        {

            for (int
i = 0; i <pixelData.Length; i += bytesPerPixel)

            {

                double gray =(pixelData[i] * 0.11) + (pixelData[i + 1] * 0.59) + (pixelData[i + 2] * 0.3);

                double desaturation =0.75;

               pixelData[i] = (byte)(pixelData[i] + desaturation * (gray - pixelData[i]));

                pixelData[i + 1] = (byte)(pixelData[i + 1] +desaturation * (gray - pixelData[i + 1]));

               pixelData[i + 2] = (byte)(pixelData[i + 2] + desaturation * (gray - pixelData[i +2]));

            }

        }

 

        privatevoid EditColor_HighSaturation(byte[]
pixelData, int bytesPerPixel)

        {

            for (int
i = 0; i <pixelData.Length; i += bytesPerPixel)

            {

                if (pixelData[i] < 0x33 ||pixelData[i] > 0xE5)

                {

                   pixelData[i] = 0x00;

                }

                else

                {

                   pixelData[i] = 0Xff;

                }

 

                if (pixelData[i + 1] < 0x33|| pixelData[i + 1] > 0xE5)

                {

                   pixelData[i + 1] = 0x00;

                }

                else

                {

                   pixelData[i + 1] = 0Xff;

                }

 

                if (pixelData[i + 2] < 0x33|| pixelData[i + 2] > 0xE5)

                {

                   pixelData[i + 2] = 0x00;

                }

                else

                {

                   pixelData[i + 1] = 0Xff;

                }

            }

        }

 

        public MainWindow()

        {

           InitializeComponent();

            // Action according to the app start or stop

            this.Loaded += (sender, e) =>DiscoverKinectSensor();

            this.Unloaded += (s, e) =>
this.kinect =
null;

        }

 

        privatevoid DiscoverKinectSensor()

        {

            KinectSensor.KinectSensors.StatusChanged+= KinectSensors_StatusChanged;

            this.Kinect =
KinectSensor.KinectSensors.FirstOrDefault(x=> x.Status ==
KinectStatus.Connected);

        }

 

        // Monitor Kinect Sensor status, get the first one if it'sconnected, remove if it's disconnected.

        privatevoid KinectSensors_StatusChanged(object
sender, StatusChangedEventArgs e)

        {

            switch (e.Status)

            {

                caseKinectStatus.Connected:

                    if (null
== this.kinect)

                   {

                       this.kinect= e.Sensor;

                   }

                    break;

                caseKinectStatus.Disconnected:

                    if (this.kinect
== e.Sensor)

                    {

                       this.kinect=
null;

                       this.kinect=
KinectSensor.KinectSensors.FirstOrDefault(x => x.Status ==
KinectStatus.Connected);

                       if (this.kinect
== null)

                       {

                           // Message to show that all kinects weredisconnected.

                       }

                   }

                    break;

            }

        }

 

效果演示

翻转:



灰化:



黑白:



血腥:



冲洗:



饱和:



 
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签:  Kinect Kinectforwindows