您的位置:首页 > 运维架构 > Linux

linux2.6内核SD Card Driver详细解析之一

2013-06-09 19:49 459 查看
/article/8011157.html

***************************************************************************************************************************

作者:EasyWave 时间:2012.03.18

类别:linux驱动开发 声明:转载,请保留链接

***************************************************************************************************************************

一:MMC/SD/SDIO的概念

MMC:(Multi Media Card)由西门子公司和首推CF的SanDisk于1997年推出的多媒体记忆卡标准。
SD:(Secure Digital Memory Card)由日本松下、东芝及美国SanDisk公司于1999年8月共同开发研制的新一代记忆卡标准,已完全兼容MMC标准。
SDIO:(Secure Digital Input and Output Card)安全数字输入输出卡。SDIO是在SD标准上定义了一种外设接口,通过SD的I/O接脚来连接外围设备,并且通过SD上的 I/O数据接位与这些外围设备进行数据传输。是目前较热门的技术,如下图中的一些设备:GPS、相机、Wi-Fi、调频广播、条形码读卡器、蓝牙等。
工作模式:工作模式是针对主机控制器来说的。SDI控制器可以在符合MMC的标准下工作,或者可以在符合SD的标准下工作,或者可以在符合SDIO的标准下工作。故就分别简称为:MMC模式、SD模式和SDIO模式。
传输模式:传输模式也是针对主机控制器来说的,指控制器与卡之间数据的传输模式,或者说是总线类型。SDI控制器可支持SPI、1位和4位的三种传输模式(总线类型)。至于1位和4位又是什么意思呢?他们是指传输数据总线的线宽,具体参考数据手册。

下面使用表格列出了MMC、SD、SDIO的电气特性及性能和不同工作模式下支持的传输模式情况:



二:MMC/SD协议

根据协议,MMC/SD卡的驱动被分为:卡识别阶段和数据传输阶段。在卡识别阶段通过命令使MMC/SD处于:空闲(idle)、准备(ready)、识别(ident)、等待(stby)、不活动(ina)几种不同的状态;而在数据传输阶段通过命令使MMC/SD处于:发送(data)、传输(tran)、接收(rcv)、程序(prg)、断开连接(dis)几种不同的状态。所以可以总结MMC/SD在工作的整个过程中分为两个阶段和十种状态。下面使用图形来描述一下在两个阶段中这十种状态之间的转换关系。
卡识别阶段,如下图:



【图是从网络上抓取】

数据传输阶段,如下图:



【图是从网络上抓取】

MMC/SD设备驱动代码在Linux源码中的位置/linux-2.6.35.4/drivers/mmc/,分别有card、core和host三个文件夹,他们都是MMC/SD卡的驱动。在实际驱动开发中,只需要在host文件夹下实现你具体的MMC/SD设备驱动部分代码,也就是控制器(支持对MMC/SD卡的控制,俗称MMC/SD主机控制器)和SDI控制器与MMC/SD卡的硬件接口电路。同时card、core和host这三层的关系,我们用一幅图来进行描述,图如下:



【图是从网络上抓取】

从图中的关系可以看出,整个MMC/SD模块中最重要的部分是Core核心层,他提供了一系列的接口函数,对上提供了将主机驱动注册到系统,给应用程序提供设备访问接口,对下提供了对主机控制器控制的方法及块设备请求的支持。
三:分析MMC/SD卡设备驱动程序

MMC/SD卡驱动程序的重要数据结构mmc_host,该结构位于Core核心层,主要用于核心层与主机驱动层的数据交换处理。定义在/include/linux/mmc/host.h中:

[plain] view
plaincopyprint?

struct mmc_host {

struct device *parent;

struct device class_dev;

int index;

const struct mmc_host_ops *ops;

unsigned int f_min;

unsigned int f_max;

u32 ocr_avail;

#define MMC_VDD_165_195 0x00000080 /* VDD voltage 1.65 - 1.95 */

#define MMC_VDD_20_21 0x00000100 /* VDD voltage 2.0 ~ 2.1 */

#define MMC_VDD_21_22 0x00000200 /* VDD voltage 2.1 ~ 2.2 */

#define MMC_VDD_22_23 0x00000400 /* VDD voltage 2.2 ~ 2.3 */

#define MMC_VDD_23_24 0x00000800 /* VDD voltage 2.3 ~ 2.4 */

#define MMC_VDD_24_25 0x00001000 /* VDD voltage 2.4 ~ 2.5 */

#define MMC_VDD_25_26 0x00002000 /* VDD voltage 2.5 ~ 2.6 */

#define MMC_VDD_26_27 0x00004000 /* VDD voltage 2.6 ~ 2.7 */

#define MMC_VDD_27_28 0x00008000 /* VDD voltage 2.7 ~ 2.8 */

#define MMC_VDD_28_29 0x00010000 /* VDD voltage 2.8 ~ 2.9 */

#define MMC_VDD_29_30 0x00020000 /* VDD voltage 2.9 ~ 3.0 */

#define MMC_VDD_30_31 0x00040000 /* VDD voltage 3.0 ~ 3.1 */

#define MMC_VDD_31_32 0x00080000 /* VDD voltage 3.1 ~ 3.2 */

#define MMC_VDD_32_33 0x00100000 /* VDD voltage 3.2 ~ 3.3 */

#define MMC_VDD_33_34 0x00200000 /* VDD voltage 3.3 ~ 3.4 */

#define MMC_VDD_34_35 0x00400000 /* VDD voltage 3.4 ~ 3.5 */

#define MMC_VDD_35_36 0x00800000 /* VDD voltage 3.5 ~ 3.6 */

unsigned long caps; /* Host capabilities */

#define MMC_CAP_4_BIT_DATA (1 << 0) /* Can the host do 4 bit transfers */

#define MMC_CAP_MMC_HIGHSPEED (1 << 1) /* Can do MMC high-speed timing */

#define MMC_CAP_SD_HIGHSPEED (1 << 2) /* Can do SD high-speed timing */

#define MMC_CAP_SDIO_IRQ (1 << 3) /* Can signal pending SDIO IRQs */

#define MMC_CAP_SPI (1 << 4) /* Talks only SPI protocols */

#define MMC_CAP_NEEDS_POLL (1 << 5) /* Needs polling for card-detection */

#define MMC_CAP_8_BIT_DATA (1 << 6) /* Can the host do 8 bit transfers */

#define MMC_CAP_DISABLE (1 << 7) /* Can the host be disabled */

#define MMC_CAP_NONREMOVABLE (1 << 8) /* Nonremovable e.g. eMMC */

#define MMC_CAP_WAIT_WHILE_BUSY (1 << 9) /* Waits while card is busy */

mmc_pm_flag_t pm_caps; /* supported pm features */

/* host specific block data */

unsigned int max_seg_size; /* see blk_queue_max_segment_size */

unsigned short max_hw_segs; /* see blk_queue_max_hw_segments */

unsigned short max_phys_segs; /* see blk_queue_max_phys_segments */

unsigned short unused;

unsigned int max_req_size; /* maximum number of bytes in one req */

unsigned int max_blk_size; /* maximum size of one mmc block */

unsigned int max_blk_count; /* maximum number of blocks in one req */

/* private data */

spinlock_t lock; /* lock for claim and bus ops */

struct mmc_ios ios; /* current io bus settings */

u32 ocr; /* the current OCR setting */

/* group bitfields together to minimize padding */

unsigned int use_spi_crc:1;

unsigned int claimed:1; /* host exclusively claimed */

unsigned int bus_dead:1; /* bus has been released */

#ifdef CONFIG_MMC_DEBUG

unsigned int removed:1; /* host is being removed */

#endif

/* Only used with MMC_CAP_DISABLE */

int enabled; /* host is enabled */

int nesting_cnt; /* "enable" nesting count */

int en_dis_recurs; /* detect recursion */

unsigned int disable_delay; /* disable delay in msecs */

struct delayed_work disable; /* disabling work */

struct mmc_card *card; /* device attached to this host */

wait_queue_head_t wq;

struct task_struct *claimer; /* task that has host claimed */

int claim_cnt; /* "claim" nesting count */

struct delayed_work detect;

const struct mmc_bus_ops *bus_ops; /* current bus driver */

unsigned int bus_refs; /* reference counter */

unsigned int sdio_irqs;

struct task_struct *sdio_irq_thread;

atomic_t sdio_irq_thread_abort;

mmc_pm_flag_t pm_flags; /* requested pm features */

#ifdef CONFIG_LEDS_TRIGGERS

struct led_trigger *led; /* activity led */

#endif

struct dentry *debugfs_root;

unsigned long private[0] ____cacheline_aligned;

};

MMC/SD卡驱动程序的重要数据结构mmc_host_ops,主要用于HOST端命令请求,直接跟芯片中SD卡寄存器打交道,定义在/include/linux/mmc/host.h中:

[plain] view
plaincopyprint?

struct mmc_host_ops {

/*

* Hosts that support power saving can use the 'enable' and 'disable'

* methods to exit and enter power saving states. 'enable' is called

* when the host is claimed and 'disable' is called (or scheduled with

* a delay) when the host is released. The 'disable' is scheduled if

* the disable delay set by 'mmc_set_disable_delay()' is non-zero,

* otherwise 'disable' is called immediately. 'disable' may be

* scheduled repeatedly, to permit ever greater power saving at the

* expense of ever greater latency to re-enable. Rescheduling is

* determined by the return value of the 'disable' method. A positive

* value gives the delay in milliseconds.

*

* In the case where a host function (like set_ios) may be called

* with or without the host claimed, enabling and disabling can be

* done directly and will nest correctly. Call 'mmc_host_enable()' and

* 'mmc_host_lazy_disable()' for this purpose, but note that these

* functions must be paired.

*

* Alternatively, 'mmc_host_enable()' may be paired with

* 'mmc_host_disable()' which calls 'disable' immediately. In this

* case the 'disable' method will be called with 'lazy' set to 0.

* This is mainly useful for error paths.

*

* Because lazy disable may be called from a work queue, the 'disable'

* method must claim the host when 'lazy' != 0, which will work

* correctly because recursion is detected and handled.

*/

int (*enable)(struct mmc_host *host);

int (*disable)(struct mmc_host *host, int lazy);

void (*request)(struct mmc_host *host, struct mmc_request *req);

/*

* Avoid calling these three functions too often or in a "fast path",

* since underlaying controller might implement them in an expensive

* and/or slow way.

*

* Also note that these functions might sleep, so don't call them

* in the atomic contexts!

*

* Return values for the get_ro callback should be:

* 0 for a read/write card

* 1 for a read-only card

* -ENOSYS when not supported (equal to NULL callback)

* or a negative errno value when something bad happened

*

* Return values for the get_cd callback should be:

* 0 for a absent card

* 1 for a present card

* -ENOSYS when not supported (equal to NULL callback)

* or a negative errno value when something bad happened

*/

void (*set_ios)(struct mmc_host *host, struct mmc_ios *ios);

int (*get_ro)(struct mmc_host *host);

int (*get_cd)(struct mmc_host *host);

void (*enable_sdio_irq)(struct mmc_host *host, int enable);

/* optional callback for HC quirks */

void (*init_card)(struct mmc_host *host, struct mmc_card *card);

};

对于mmc_host_ops需要重点讲一下:

[plain] view
plaincopyprint?

void (*request)(struct mmc_host *host, struct mmc_request *req);

这个函数主要用于SD卡命令的传输,比如发送和接收命令,CMD0,CMD8,ACMD41诸如此类的都是在这个函数去实现。

[plain] view
plaincopyprint?

void (*set_ios)(struct mmc_host *host, struct mmc_ios *ios);

这个函数主要用于设置SD卡的CLK,MMC_POWER_OFF,MMC_POWER_ON的一些初始化。

[plain] view
plaincopyprint?

int (*get_ro)(struct mmc_host *host);

这个函数主要用于检测SD卡的写保护是否打开。

[plain] view
plaincopyprint?

int (*get_cd)(struct mmc_host *host);

这个函数主要用于SD卡的检测,是否有卡插入和弹出。

MMC/SD卡驱动程序的重要函数mmc_alloc_host,用于分配mmc_host结构体指针的内存空间大小,定义在host.c中:

[plain] view
plaincopyprint?

struct mmc_host *mmc_alloc_host(int extra, struct device *dev)

{

int err;

struct mmc_host *host;

if (!idr_pre_get(&mmc_host_idr, GFP_KERNEL))

return NULL;

host = kzalloc(sizeof(struct mmc_host) + extra, GFP_KERNEL);

if (!host)

return NULL;

spin_lock(&mmc_host_lock);

err = idr_get_new(&mmc_host_idr, host, &host->index);

spin_unlock(&mmc_host_lock);

if (err)

goto free;

dev_set_name(&host->class_dev, "mmc%d", host->index);

host->parent = dev;

host->class_dev.parent = dev;

host->class_dev.class = &mmc_host_class;

device_initialize(&host->class_dev);

spin_lock_init(&host->lock);

init_waitqueue_head(&host->wq);

INIT_DELAYED_WORK(&host->detect, mmc_rescan);

INIT_DELAYED_WORK_DEFERRABLE(&host->disable, mmc_host_deeper_disable);

/*

* By default, hosts do not support SGIO or large requests.

* They have to set these according to their abilities.

*/

host->max_hw_segs = 1;

host->max_phys_segs = 1;

host->max_seg_size = PAGE_CACHE_SIZE;

host->max_req_size = PAGE_CACHE_SIZE;

host->max_blk_size = 512;

host->max_blk_count = PAGE_CACHE_SIZE / 512;

return host;

free:

kfree(host);

return NULL;

而在mmc_alloc_host函数中被调用的mmc_rescan函数,这个是需要重点关注的,因为SD卡协议中的检测,以及卡识别等都是在此函数中实现,具体的代码如下:

[plain] view
plaincopyprint?

void mmc_rescan(struct work_struct *work)

{

struct mmc_host *host =

container_of(work, struct mmc_host, detect.work);

u32 ocr;

int err;

mmc_bus_get(host);

/* if there is a card registered, check whether it is still present */

if ((host->bus_ops != NULL) && host->bus_ops->detect && !host->bus_dead)

host->bus_ops->detect(host);

mmc_bus_put(host);

mmc_bus_get(host);

/* if there still is a card present, stop here */

if (host->bus_ops != NULL) {

mmc_bus_put(host);

goto out;

}

/* detect a newly inserted card */

/*

* Only we can add a new handler, so it's safe to

* release the lock here.

*/

mmc_bus_put(host);

if (host->ops->get_cd && host->ops->get_cd(host) == 0)

goto out;

mmc_claim_host(host);

mmc_power_up(host);

sdio_reset(host);

mmc_go_idle(host); //让SD卡处于IDL_STATUS

mmc_send_if_cond(host, host->ocr_avail); //检测SD卡是否支持SD2.0

/*

* First we search for SDIO...

*/

err = mmc_send_io_op_cond(host, 0, &ocr); //检测是否是支持SDIO的卡,比如:SDIO WIFI等.

if (!err) {

if (mmc_attach_sdio(host, ocr))

mmc_power_off(host);

goto out;

}

/*

* ...then normal SD...

*/

err = mmc_send_app_op_cond(host, 0, &ocr); //检测是否是支持标准的SD卡.

if (!err) {

if (mmc_attach_sd(host, ocr))

mmc_power_off(host);

goto out;

}

/*

* ...and finally MMC.

*/

err = mmc_send_op_cond(host, 0, &ocr); //最后才是检测是否是支持MMC的卡

if (!err) {

if (mmc_attach_mmc(host, ocr))

mmc_power_off(host);

goto out;

}

mmc_release_host(host);

mmc_power_off(host);

out:

if (host->caps & MMC_CAP_NEEDS_POLL)

mmc_schedule_delayed_work(&host->detect, HZ);

}

MMC/SD卡驱动程序的重要函数mmc_add_host,用于挂载一个mmc_host到内核,定义在host.c中:

[plain] view
plaincopyprint?

int mmc_add_host(struct mmc_host *host)

{

int err;

WARN_ON((host->caps & MMC_CAP_SDIO_IRQ) &&

!host->ops->enable_sdio_irq);

led_trigger_register_simple(dev_name(&host->class_dev), &host->led);

err = device_add(&host->class_dev);

if (err)

return err;

#ifdef CONFIG_DEBUG_FS

mmc_add_host_debugfs(host);

#endif

mmc_start_host(host);

return 0;

}

可以从SD卡平台驱动看到上面函数的调用情况:
static int __devinit s3cmci_probe(struct platform_device *pdev)

{

struct s3cmci_host *host;

//实例一个名为mmc的结构体指针,用于与Core核心层中的mmc_host结构体指针相关联

struct mmc_host *mmc;

int ret;

spin_lock_init(&host->complete_lock);

//分配mmc_host结构体指针的内存空间大小,该函数在host.c中实现,这里要注意一点,为什么参数

//是s3cmci_host结构体的大小,到host.c中看,实际这里分配的是mmc_host加s3cmci_host的大小。

mmc = mmc_alloc_host(sizeof(struct s3cmci_host), &pdev->dev);

if (!mmc)

{

ret = -ENOMEM;

goto probe_out;

}

//调用mmc_priv函数将mmc_host和s3cmci_host结构体的对象关联起来,mmc_priv定义在host.h中

host = mmc_priv(mmc);

//下面就开始初始化s3cmci_host结构体的各成员

host->mmc = mmc;

host->pdev = pdev;

host->pdata = pdev->dev.platform_data;

..................................

..................................

..................................

//下面对mmc_host进行初始化

mmc->ops = &s3cmci_ops; //SDI主机控制器操作结构体

mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34; //设置工作电压范围

mmc->caps = MMC_CAP_4_BIT_DATA; //设置总线宽度为4位

mmc->f_min = host->clk_rate / (host->clk_div * 256); //设置最小工作频率

mmc->f_max = host->clk_rate / host->clk_div; //设置最大工作频率

mmc->max_blk_count = 4095;

mmc->max_blk_size = 4095;

mmc->max_req_size = 4095 * 512;

mmc->max_seg_size = mmc->max_req_size;

mmc->max_phys_segs = 128;

mmc->max_hw_segs = 128;

//将SDI host设备注册到系统中

ret = mmc_add_host(mmc);

if (ret)

{

dev_err(&pdev->dev, "failed to add mmc host./n");

goto free_cpufreq;

}

//将SDI host设备的数据赋值给系统平台设备

platform_set_drvdata(pdev, mmc);

return 0;

..................................

..................................

..................................

probe_free_host:

mmc_free_host(mmc);

probe_out:

return ret;

}

未完待续.............................
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: