您的位置:首页 > 理论基础 > 计算机网络

Linux内核--网络栈实现分析(四)--网络层之IP协议(上)

2013-04-13 13:24 555 查看
本文分析基于Linux Kernel 1.2.13

原创作品,转载请标明http://blog.csdn.net/yming0221/article/details/7514017

更多请看专栏,地址http://blog.csdn.net/column/details/linux-kernel-net.html

作者:闫明

注:标题中的”(上)“,”(下)“表示分析过程基于数据包的传递方向:”(上)“表示分析是从底层向上分析、”(下)“表示分析是从上向下分析。

简单分析了链路层之后,上升到网络层来分析,看看链路层是如何为其上层--网络层服务的。其实在驱动程序层和网络层直接还有一层是接口层,叫做驱动程序接口层,用来整合不同的网络设备。接口层的内容会在上下层中提及。这里我们分析网络IP协议的实现原理。

其实现的文件主要是net/inet/ip.c文件中

我们首先分析下ip_init()初始化函数

这个函数是如何被调用的呢?

下面是调用的过程:

首先是在系统启动过程main.c中调用了sock_init()函数

[cpp] view
plaincopy

void sock_init(void)//网络栈初始化

{

int i;

printk("Swansea University Computer Society NET3.019\n");

/*

* Initialize all address (protocol) families.

*/

for (i = 0; i < NPROTO; ++i) pops[i] = NULL;

/*

* Initialize the protocols module.

*/

proto_init();

#ifdef CONFIG_NET

/*

* Initialize the DEV module.

*/

dev_init();

/*

* And the bottom half handler

*/

bh_base[NET_BH].routine= net_bh;//设置NET 下半部分的处理函数为net_bh

enable_bh(NET_BH);

#endif

}

然后调用了proto_init()函数

[cpp] view
plaincopy

void proto_init(void)

{

extern struct net_proto protocols[]; /* Network protocols 全局变量,定义在protocols.c中*/

struct net_proto *pro;

/* Kick all configured protocols. */

pro = protocols;

while (pro->name != NULL) //对所有的定义的域进行初始化

{

(*pro->init_func)(pro);

pro++;

}

/* We're all done... */

}

而protocols全局变量协议向量表的定义中对INET域中协议的初始化函数设置为inet_proto_init()

[cpp] view
plaincopy

/*

* Protocol Table

*/

struct net_proto protocols[] = {

#ifdef CONFIG_UNIX

{ "UNIX", unix_proto_init },

#endif

#if defined(CONFIG_IPX)||defined(CONFIG_ATALK)

{ "802.2", p8022_proto_init },

{ "SNAP", snap_proto_init },

#endif

#ifdef CONFIG_AX25

{ "AX.25", ax25_proto_init },

#endif

#ifdef CONFIG_INET

{ "INET", inet_proto_init },

#endif

#ifdef CONFIG_IPX

{ "IPX", ipx_proto_init },

#endif

#ifdef CONFIG_ATALK

{ "DDP", atalk_proto_init },

#endif

{ NULL, NULL }

};

看到在inet_proto_init()函数中调用了ip_init()对IP层进行了初始化。

[cpp] view
plaincopy

void inet_proto_init(struct net_proto *pro)//INET域协议初始化函数

{

struct inet_protocol *p;

int i;

printk("Swansea University Computer Society TCP/IP for NET3.019\n");

/*

* Tell SOCKET that we are alive...

*/

(void) sock_register(inet_proto_ops.family, &inet_proto_ops);

...........................................

printk("IP Protocols: ");

for(p = inet_protocol_base; p != NULL;) //将inet_protocol_base指向的一个inet_protocol结构体加入数组inet_protos中

{

struct inet_protocol *tmp = (struct inet_protocol *) p->next;

inet_add_protocol(p);

printk("%s%s",p->name,tmp?", ":"\n");

p = tmp;

}

/*

* Set the ARP module up

*/

arp_init();//对地址解析层进行初始化

/*

* Set the IP module up

*/

ip_init();//对IP层进行初始化

}

代码中inet_protocol_base指向的链表为&igmp_protocol-->&icmp_protocol-->&udp_protocol-->&tcp_protocol-->NULL(定义在protocol.c中)

分析ip_init()函数需要先要知道packet_type结构,这个结构体是网络层协议的结构体,网络层协议与该结构体一一对应。

[cpp] view
plaincopy

/*该结构用于表示网络层协议,网络层协议与packt_type一一对应*/

struct packet_type {

unsigned short type; /* This is really htons(ether_type). ,对应的网络层协议编号*/

struct device * dev;

int (*func) (struct sk_buff *, struct device *,

struct packet_type *);

void *data;

struct packet_type *next;

};

第一个字段的网络层协议编号定义在include/linux/if_ether.h中

[cpp] view
plaincopy

/* These are the defined Ethernet Protocol ID's. */

#define ETH_P_LOOP 0x0060 /* Ethernet Loopback packet */

#define ETH_P_ECHO 0x0200 /* Ethernet Echo packet */

#define ETH_P_PUP 0x0400 /* Xerox PUP packet */

#define ETH_P_IP 0x0800 /* Internet Protocol packet */

#define ETH_P_ARP 0x0806 /* Address Resolution packet */

#define ETH_P_RARP 0x8035 /* Reverse Addr Res packet */

#define ETH_P_X25 0x0805 /* CCITT X.25 */

#define ETH_P_ATALK 0x809B /* Appletalk DDP */

#define ETH_P_IPX 0x8137 /* IPX over DIX */

#define ETH_P_802_3 0x0001 /* Dummy type for 802.3 frames */

#define ETH_P_AX25 0x0002 /* Dummy protocol id for AX.25 */

#define ETH_P_ALL 0x0003 /* Every packet (be careful!!!) */

#define ETH_P_802_2 0x0004 /* 802.2 frames */

#define ETH_P_SNAP 0x0005 /* Internal only */

第二个字段表示处理包的网络接口设备,一般初始化为NULL。

第三个字段为相应网络协议的处理函数。

第四个字段是一个void指针。

第五个字段是next指针域,用于将该结构连接成链表。

下面是ip_init()函数

[cpp] view
plaincopy

/*

* IP registers the packet type and then calls the subprotocol initialisers

*/

void ip_init(void)//该函数在af_inet.c文件中

{

ip_packet_type.type=htons(ETH_P_IP);

dev_add_pack(&ip_packet_type);//将网络协议插入IP协议链表,头插法

/* So we flush routes when a device is downed */

register_netdevice_notifier(&ip_rt_notifier);//将其插入通知链表

/* ip_raw_init();

ip_packet_init();

ip_tcp_init();

ip_udp_init();*/

}

这里需要说明的是系统采用主动通知的方式,其实现是有赖于notifier_block结构,其定义在notifier.h中

[cpp] view
plaincopy

struct notifier_block

{

int (*notifier_call)(unsigned long, void *);

struct notifier_block *next;

int priority;

};

对于网卡设备而言,网卡设备的启动和关闭是事件,内核需要得到通知从而采取相应的措施。其原理是:当事件发生时,事件通知者便利某个队列,对队列中感兴趣(符合条件)的被通知者调用被通知者注册是定义的通知处理函数,从而达到让内核做出相应的操作。

当硬件缓冲区数据填满后,会执行中断处理程序,以NE 8390网卡为例,由于在ne.c文件中注册中断时的中断处理函数设置如下:

[cpp] view
plaincopy

request_irq (dev->irq, ei_interrupt, 0, wordlength==2 ? "ne2000":"ne1000");

中断处理函数为ei_interrupt()。执行ei_interrupt()函数时会调用函数ei_recieve(),而ei_recieve()函数会调用netif_rx()函数将以skb_buf的形式发送给上层。

当然netif_rx()函数的特点前面分析过,即Bottom Half技术,使得中断处理过程有效的缩短,提高系统的效率。在下半段该函数会调用dev_transmit()函数,而它会调用函数dev_tint()函数,dev_tinit()会调用函数dev_queue_xmit(),这个函数会调用dev->hard_start_xmit函数,该函数指针在ethdev_init()函数中赋值了:

[cpp] view
plaincopy

dev->hard_start_xmit = &ei_start_xmit;//设备的发送函数,定义在8390.c中

最后调用ei_start_xmit()函数将数据包从硬件设备中读出放在skb中,即存放到内核空间中。

中断返回后系统会执行下半段,即执行net_bh()函数,该函数会扫描网络协议队列,调用相应的协议的接收函数,IP协议就会调用ip_rcv()

[cpp] view
plaincopy

/*

* When we are called the queue is ready to grab, the interrupts are

* on and hardware can interrupt and queue to the receive queue a we

* run with no problems.

* This is run as a bottom half after an interrupt handler that does

* mark_bh(NET_BH);

*/

void net_bh(void *tmp)

{

...................................

while((skb=skb_dequeue(&backlog))!=NULL)//出队直到队列为空

{

...............................

/*

* Fetch the packet protocol ID. This is also quite ugly, as

* it depends on the protocol driver (the interface itself) to

* know what the type is, or where to get it from. The Ethernet

* interfaces fetch the ID from the two bytes in the Ethernet MAC

* header (the h_proto field in struct ethhdr), but other drivers

* may either use the ethernet ID's or extra ones that do not

* clash (eg ETH_P_AX25). We could set this before we queue the

* frame. In fact I may change this when I have time.

*/

type = skb->dev->type_trans(skb, skb->dev);//取出该数据包所属的协议类型

/*

* We got a packet ID. Now loop over the "known protocols"

* table (which is actually a linked list, but this will

* change soon if I get my way- FvK), and forward the packet

* to anyone who wants it.

*

* [FvK didn't get his way but he is right this ought to be

* hashed so we typically get a single hit. The speed cost

* here is minimal but no doubt adds up at the 4,000+ pkts/second

* rate we can hit flat out]

*/

pt_prev = NULL;

for (ptype = ptype_base; ptype != NULL; ptype = ptype->next) //遍历ptype_base所指向的网络协议队列

{

//判断协议号是否匹配

if ((ptype->type == type || ptype->type == htons(ETH_P_ALL)) && (!ptype->dev || ptype->dev==skb->dev))

{

/*

* We already have a match queued. Deliver

* to it and then remember the new match

*/

if(pt_prev)

{

struct sk_buff *skb2;

skb2=skb_clone(skb, GFP_ATOMIC);//复制数据包结构

/*

* Kick the protocol handler. This should be fast

* and efficient code.

*/

if(skb2)

pt_prev->func(skb2, skb->dev, pt_prev);//调用相应协议的处理函数,

//这里和网络协议的种类有关系

//如IP 协议的处理函数就是ip_rcv

}

/* Remember the current last to do */

pt_prev=ptype;

}

} /* End of protocol list loop */

...........................................

}

IP数据包类型的初始化设置在ip.c中

[cpp] view
plaincopy

/*

* IP protocol layer initialiser

*/

static struct packet_type ip_packet_type =

{

0, /* MUTTER ntohs(ETH_P_IP),*/

NULL, /* All devices */

ip_rcv,

NULL,

NULL,

};

接下来分析ip_rcv()函数,这是IP层的接收函数,接收来自链路层的数据。

这里首先了解一下IP数据包的首部结构,结构示意图如下:



标志位三位,分别是:保留,DF(可以分片),MF(还有后续分片)。

内核中对应的结构体定义如下(include/linux/ip.h):

[cpp] view
plaincopy

/*IP数据包首部结构体*/

struct iphdr {

#if defined(LITTLE_ENDIAN_BITFIELD)

__u8 ihl:4,

version:4;

#elif defined (BIG_ENDIAN_BITFIELD)

__u8 version:4,

ihl:4;

#else

#error "Please fix <asm/byteorder.h>"

#endif

__u8 tos;//服务类型

__u16 tot_len;//总长度

__u16 id;//标示

__u16 frag_off;//标志和片偏移

__u8 ttl;//生存时间

__u8 protocol;//协议

__u16 check;//头部校验和

__u32 saddr;//源地址

__u32 daddr;//目的地址

/*The options start here. */

};

内核中用于封装网络数据的最重要的数据结构sk_buff定义在include/linux/skbuff.h中:

[cpp] view
plaincopy

struct sk_buff {

struct sk_buff * volatile next;//指针域,指向后继

struct sk_buff * volatile prev;//指针域,指向前驱

#if CONFIG_SKB_CHECK

int magic_debug_cookie;

#endif

struct sk_buff * volatile link3;//该指针域用于TCP协议,指向数据包重发队列

struct sock *sk;//该数据指向的套接字

volatile unsigned long when; /* used to compute rtt's 用于计算往返时间*/

struct timeval stamp;

struct device *dev;//标示发送或接收该数据包的接口设备

struct sk_buff *mem_addr;//指向该sk_buff结构指向的内存基地址,用于该数据结构的内存释放

union {//该联合结构用于实现通用

struct tcphdr *th;

struct ethhdr *eth;//链路层有效

struct iphdr *iph;//网络层有效

struct udphdr *uh;

unsigned char *raw;

unsigned long seq;//TCP协议有效,表示该数据包的ACK值

} h;

struct iphdr *ip_hdr; /* For IPPROTO_RAW ,指向IP首部指针,用于RAW套接字*/

unsigned long mem_len;//表示该结构的大小和数据帧的总大小

unsigned long len;//表示数据帧大小

unsigned long fraglen;//表示分片个数

struct sk_buff *fraglist; /* Fragment list ,分片数据包队列*/

unsigned long truesize;//==mem_len

unsigned long saddr;//源地址

unsigned long daddr;//目的地址

unsigned long raddr;//数据包的下一站地址

volatile char acked,//==1表示该数据包已经得到确认

used,//==1表示该数据包已经被数据包用完,可以释放

free,//==1表示该数据包用完后直接释放,不用缓存

arp;//==1表示MAC数据帧首部完成,否则表示MAC首部目的硬件地址尚不知晓,需使用ARP协议询问

unsigned char tries,//表示数据包已得到试发送

lock,//表示是否被其他程序使用

localroute,//表示是局域网路由还是广域网路由

pkt_type;//表示数据包的类型,分为,发往本机、广播、多播、发往其他主机

#define PACKET_HOST 0 /* To us */

#define PACKET_BROADCAST 1

#define PACKET_MULTICAST 2

#define PACKET_OTHERHOST 3 /* Unmatched promiscuous */

unsigned short users; /* User count - see datagram.c (and soon seqpacket.c/stream.c) 使用该数据包的程序数目*/

unsigned short pkt_class; /* For drivers that need to cache the packet type with the skbuff (new PPP) */

#ifdef CONFIG_SLAVE_BALANCING

unsigned short in_dev_queue;//表示数据包是否在设备缓冲队列

#endif

unsigned long padding[0];//填充

unsigned char data[0];//指向数据部分

};

ip_rcv()函数流程图:



[cpp] view
plaincopy

/*

* This function receives all incoming IP datagrams.

*/

int ip_rcv(struct sk_buff *skb, struct device *dev, struct packet_type *pt)

{

struct iphdr *iph = skb->h.iph;

struct sock *raw_sk=NULL;

unsigned char hash;

unsigned char flag = 0;

unsigned char opts_p = 0; /* Set iff the packet has options. */

struct inet_protocol *ipprot;//每个传输层协议对应一个inet_protocol,用于调用传输层的服务函数

static struct options opt; /* since we don't use these yet, and they

take up stack space. */

int brd=IS_MYADDR;

int is_frag=0;

#ifdef CONFIG_IP_FIREWALL

int err;

#endif

ip_statistics.IpInReceives++;

/*

* Tag the ip header of this packet so we can find it

*/

skb->ip_hdr = iph;//设置IP首部指针

/*

* Is the datagram acceptable?

*

* 1. Length at least the size of an ip header

* 2. Version of 4

* 3. Checksums correctly. [Speed optimisation for later, skip loopback checksums]

* (4. We ought to check for IP multicast addresses and undefined types.. does this matter ?)

*/

//IP数据包合法性检查

if (skb->len<sizeof(struct iphdr) || iph->ihl<5 || iph->version != 4 ||

skb->len<ntohs(iph->tot_len) || ip_fast_csum((unsigned char *)iph, iph->ihl) !=0)

{

ip_statistics.IpInHdrErrors++;

kfree_skb(skb, FREE_WRITE);

return(0);

}

/*

* See if the firewall wants to dispose of the packet.

*/

#ifdef CONFIG_IP_FIREWALL

//检查防火墙是否阻止该数据包,过滤数据包

if ((err=ip_fw_chk(iph,dev,ip_fw_blk_chain,ip_fw_blk_policy, 0))!=1)

{

if(err==-1)

icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0, dev);

kfree_skb(skb, FREE_WRITE);

return 0;

}

#endif

/*

* Our transport medium may have padded the buffer out. Now we know it

* is IP we can trim to the true length of the frame.

*/

skb->len=ntohs(iph->tot_len);

/*

* Next analyse the packet for options. Studies show under one packet in

* a thousand have options....

*/

if (iph->ihl != 5)//IP数据报首部存在选项字段

{ /* Fast path for the typical optionless IP packet. */

memset((char *) &opt, 0, sizeof(opt));

if (do_options(iph, &opt) != 0)

return 0;

opts_p = 1;

}

/*

* Remember if the frame is fragmented.

*/

//看该数据包是否含有分片,MF和偏移同时为0,则表示无分片,否则是分片,此处有BUG

/*

分片的条件

第一个分片MF=1,offset=0

中间分片MF=1,offset!=0

最后分片MF=1,offset!=0

*/

if(iph->frag_off)

{

if (iph->frag_off & 0x0020)

is_frag|=1;

/*

* Last fragment ?

*/

if (ntohs(iph->frag_off) & 0x1fff)

is_frag|=2;

}

/*

* Do any IP forwarding required. chk_addr() is expensive -- avoid it someday.

*

* This is inefficient. While finding out if it is for us we could also compute

* the routing table entry. This is where the great unified cache theory comes

* in as and when someone implements it

*

* For most hosts over 99% of packets match the first conditional

* and don't go via ip_chk_addr. Note: brd is set to IS_MYADDR at

* function entry.

*/

if ( iph->daddr != skb->dev->pa_addr && (brd = ip_chk_addr(iph->daddr)) == 0)

{

/*

* Don't forward multicast or broadcast frames.广播的数据报不转发

*/

if(skb->pkt_type!=PACKET_HOST || brd==IS_BROADCAST)

{

kfree_skb(skb,FREE_WRITE);

return 0;

}

/*

* The packet is for another target. Forward the frame

*/

#ifdef CONFIG_IP_FORWARD

ip_forward(skb, dev, is_frag);//转发数据报

#else

/* printk("Machine %lx tried to use us as a forwarder to %lx but we have forwarding disabled!\n",

iph->saddr,iph->daddr);*/

ip_statistics.IpInAddrErrors++;

#endif

/*

* The forwarder is inefficient and copies the packet. We

* free the original now.

*/

kfree_skb(skb, FREE_WRITE);

return(0);

}

#ifdef CONFIG_IP_MULTICAST

//多播

if(brd==IS_MULTICAST && iph->daddr!=IGMP_ALL_HOSTS && !(dev->flags&IFF_LOOPBACK))

{

/*

* Check it is for one of our groups

*/

struct ip_mc_list *ip_mc=dev->ip_mc_list;

do

{

if(ip_mc==NULL)

{

kfree_skb(skb, FREE_WRITE);

return 0;

}

if(ip_mc->multiaddr==iph->daddr)

break;

ip_mc=ip_mc->next;

}

while(1);

}

#endif

/*

* Account for the packet

*/

#ifdef CONFIG_IP_ACCT

ip_acct_cnt(iph,dev, ip_acct_chain);

#endif

/*

* Reassemble IP fragments.

*/

if(is_frag)//该数据报是一个分片,进行合并

{

/* Defragment. Obtain the complete packet if there is one */

/*该函数的作用是梳理分片的数据报,如果接收当前分片后,所有分片均已到达

*该函数会调用ip_glue()函数进行IP数据报的重组,否则将该IP数据报放到ipq中fragment

*字段指向的队列中

*

*/

skb=ip_defrag(iph,skb,dev);

if(skb==NULL)

return 0;

skb->dev = dev;

iph=skb->h.iph;

}

/*

* Point into the IP datagram, just past the header.

*/

skb->ip_hdr = iph;

skb->h.raw += iph->ihl*4;//sk_buff中union类型的h字段永远指向当前正在处理的协议的首部,这里使其指向传输层的首部,用于传输层的处理

/*

* Deliver to raw sockets. This is fun as to avoid copies we want to make no surplus copies.

*/

hash = iph->protocol & (SOCK_ARRAY_SIZE-1);

/* If there maybe a raw socket we must check - if not we don't care less */

//处理RAW类型的套接字

if((raw_sk=raw_prot.sock_array[hash])!=NULL)

{

struct sock *sknext=NULL;

struct sk_buff *skb1;

raw_sk=get_sock_raw(raw_sk, hash, iph->saddr, iph->daddr);

if(raw_sk) /* Any raw sockets */

{

do

{

/* Find the next */

sknext=get_sock_raw(raw_sk->next, hash, iph->saddr, iph->daddr);

if(sknext)

skb1=skb_clone(skb, GFP_ATOMIC);

else

break; /* One pending raw socket left */

if(skb1)

raw_rcv(raw_sk, skb1, dev, iph->saddr,iph->daddr);//RAW类型套接字的接收函数

raw_sk=sknext;

}

while(raw_sk!=NULL);

/* Here either raw_sk is the last raw socket, or NULL if none */

/* We deliver to the last raw socket AFTER the protocol checks as it avoids a surplus copy */

}

}

/*

* skb->h.raw now points at the protocol beyond the IP header.

*/

hash = iph->protocol & (MAX_INET_PROTOS -1);

//对所有使用IP协议的上层协议套接字处理

for (ipprot = (struct inet_protocol *)inet_protos[hash];ipprot != NULL;ipprot=(struct inet_protocol *)ipprot->next)

{

struct sk_buff *skb2;

if (ipprot->protocol != iph->protocol)

continue;

/*

* See if we need to make a copy of it. This will

* only be set if more than one protocol wants it.

* and then not for the last one. If there is a pending

* raw delivery wait for that

*/

if (ipprot->copy || raw_sk)

{

skb2 = skb_clone(skb, GFP_ATOMIC);

if(skb2==NULL)

continue;

}

else

{

skb2 = skb;

}

flag = 1;

/*

* Pass on the datagram to each protocol that wants it,

* based on the datagram protocol. We should really

* check the protocol handler's return values here...

*/

ipprot->handler(skb2, dev, opts_p ? &opt : 0, iph->daddr,

(ntohs(iph->tot_len) - (iph->ihl * 4)),

iph->saddr, 0, ipprot);

}

/*

* All protocols checked.

* If this packet was a broadcast, we may *not* reply to it, since that

* causes (proven, grin) ARP storms and a leakage of memory (i.e. all

* ICMP reply messages get queued up for transmission...)

*/

if(raw_sk!=NULL) /* Shift to last raw user */

raw_rcv(raw_sk, skb, dev, iph->saddr, iph->daddr);

else if (!flag) /* Free and report errors */

{

if (brd != IS_BROADCAST && brd!=IS_MULTICAST)

icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PROT_UNREACH, 0, dev);

kfree_skb(skb, FREE_WRITE);

}

return(0);

}

这里会进一步调用raw_rcv()或者相应协议的ipprot->handler来调用传输层服务函数。下篇会进行简单分析。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: 
相关文章推荐