您的位置:首页 > 大数据 > 人工智能

再谈应用环境下的TIME_WAIT和CLOSE_WAIT

2013-04-07 21:08 246 查看
昨天解决了一个HttpClient调用错误导致的服务器异常,具体过程如下:
/article/2973927.html
里头的分析过程有提到,通过查看服务器网络状态检测到服务器有大量的CLOSE_WAIT的状态。

在服务器的日常维护过程中,会经常用到下面的命令:

Plain代码



netstat -n | awk '/^tcp/ {++S[$NF]} END {for(a in S) print a, S[a]}'

Plain代码

MSL 為一個 TCP Segment (某一塊 TCP 網路封包) 從來源送到目的之間可續存的時間 (也就是一個網路封包在網路上傳輸時能存活的時間),由於 RFC
793 TCP 傳輸協定是在 1981 年定義的,當時的網路速度不像現在的網際網路那樣發達,你可以想像你從瀏覽器輸入網址等到第一個 byte 出現要等
4 分鐘嗎?在現在的網路環境下幾乎不可能有這種事情發生,因此我們大可將 TIME_WAIT 狀態的續存時間大幅調低,好讓 連線埠 (Ports) 能更快空出來給其他連線使用。

MSL 為一個 TCP Segment (某一塊 TCP 網路封包) 從來源送到目的之間可續存的時間 (也就是一個網路封包在網路上傳輸時能存活的時間),由於 RFC 793 TCP 傳輸協定是在 1981 年定義的,當時的網路速度不像現在的網際網路那樣發達,你可以想像你從瀏覽器輸入網址等到第一個 byte 出現要等 4 分鐘嗎?在現在的網路環境下幾乎不可能有這種事情發生,因此我們大可將 TIME_WAIT 狀態的續存時間大幅調低,好讓 連線埠 (Ports) 能更快空出來給其他連線使用。


再引用网络资源的一段话:

Plain代码

值得一说的是,对于基于TCP的HTTP协议,关闭TCP连接的是Server端,这样,Server端会进入TIME_WAIT状态,可 想而知,对于访问量大的Web Server,会存在大量的TIME_WAIT状态,假如server一秒钟接收1000个请求,那么就会积压240*1000=240,000个
TIME_WAIT的记录,维护这些状态给Server带来负担。当然现代操作系统都会用快速的查找算法来管理这些TIME_WAIT,所以对于新的 TCP连接请求,判断是否hit中一个TIME_WAIT不会太费时间,但是有这么多状态要维护总是不好。

HTTP协议1.1版规定default行为是Keep-Alive,也就是会重用TCP连接传输多个 request/response,一个主要原因就是发现了这个问题。

Plain代码

#对于一个新建连接,内核要发送多少个 SYN 连接请求才决定放弃,不应该大于255,默认值是5,对应于180秒左右时间

net.ipv4.tcp_syn_retries=2
#net.ipv4.tcp_synack_retries=2

#表示当keepalive起用的时候,TCP发送keepalive消息的频度。缺省是2小时,改为300秒

net.ipv4.tcp_keepalive_time=1200

net.ipv4.tcp_orphan_retries=3

#表示如果套接字由本端要求关闭,这个参数决定了它保持在FIN-WAIT-2状态的时间

net.ipv4.tcp_fin_timeout=30

#表示SYN队列的长度,默认为1024,加大队列长度为8192,可以容纳更多等待连接的网络连接数。

net.ipv4.tcp_max_syn_backlog = 4096

#表示开启SYN Cookies。当出现SYN等待队列溢出时,启用cookies来处理,可防范少量SYN攻击,默认为0,表示关闭

net.ipv4.tcp_syncookies = 1
#表示开启重用。允许将TIME-WAIT sockets重新用于新的TCP连接,默认为0,表示关闭

net.ipv4.tcp_tw_reuse = 1
#表示开启TCP连接中TIME-WAIT sockets的快速回收,默认为0,表示关闭

net.ipv4.tcp_tw_recycle = 1
##减少超时前的探测次数
net.ipv4.tcp_keepalive_probes=5

##优化网络设备接收队列
net.core.netdev_max_backlog=3000

#对于一个新建连接,内核要发送多少个 SYN 连接请求才决定放弃,不应该大于255,默认值是5,对应于180秒左右时间
net.ipv4.tcp_syn_retries=2
#net.ipv4.tcp_synack_retries=2
#表示当keepalive起用的时候,TCP发送keepalive消息的频度。缺省是2小时,改为300秒
net.ipv4.tcp_keepalive_time=1200
net.ipv4.tcp_orphan_retries=3
#表示如果套接字由本端要求关闭,这个参数决定了它保持在FIN-WAIT-2状态的时间
net.ipv4.tcp_fin_timeout=30
#表示SYN队列的长度,默认为1024,加大队列长度为8192,可以容纳更多等待连接的网络连接数。
net.ipv4.tcp_max_syn_backlog = 4096
#表示开启SYN Cookies。当出现SYN等待队列溢出时,启用cookies来处理,可防范少量SYN攻击,默认为0,表示关闭
net.ipv4.tcp_syncookies = 1
#表示开启重用。允许将TIME-WAIT sockets重新用于新的TCP连接,默认为0,表示关闭
net.ipv4.tcp_tw_reuse = 1
#表示开启TCP连接中TIME-WAIT sockets的快速回收,默认为0,表示关闭
net.ipv4.tcp_tw_recycle = 1
##减少超时前的探测次数
net.ipv4.tcp_keepalive_probes=5
##优化网络设备接收队列
net.core.netdev_max_backlog=3000


Plain代码




修改完之后执行/sbin/sysctl -p让参数生效。

这里头主要注意到的是net.ipv4.tcp_tw_reuse

net.ipv4.tcp_tw_recycle

net.ipv4.tcp_fin_timeout

net.ipv4.tcp_keepalive_*

这几个参数。

net.ipv4.tcp_tw_reuse和net.ipv4.tcp_tw_recycle的开启都是为了回收处于TIME_WAIT状态的资源。

net.ipv4.tcp_fin_timeout这个时间可以减少在异常情况下服务器从FIN-WAIT-2转到TIME_WAIT的时间。

net.ipv4.tcp_keepalive_*一系列参数,是用来设置服务器检测连接存活的相关配置。

关于keepalive的用途可以参考:http://hi.baidu.com/tantea/blog/item/580b9d0218f981793812bb7b.html

2.服务器保持了大量CLOSE_WAIT状态

休息一下,喘口气,一开始只是打算说说TIME_WAIT和CLOSE_WAIT的区别,没想到越挖越深,这也是写博客总结的好处,总可以有意外的收获。

TIME_WAIT状态可以通过优化服务器参数得到解决,因为发生TIME_WAIT的情况是服务器自己可控的,要么就是对方连接的异常,要么就是自己没有迅速回收资源,总之不是由于自己程序错误导致的。
但是CLOSE_WAIT就不一样了,从上面的图可以看出来,如果一直保持在CLOSE_WAIT状态,那么只有一种情况,就是在对方关闭连接之后服务器程序自己没有进一步发出ack信号。换句话说,就是在对方连接关闭之后,程序里没有检测到,或者程序压根就忘记了这个时候需要关闭连接,于是这个资源就一直被程序占着。个人觉得这种情况,通过服务器内核参数也没办法解决,服务器对于程序抢占的资源没有主动回收的权利,除非终止程序运行。

如果你使用的是HttpClient并且你遇到了大量CLOSE_WAIT的情况,那么这篇日志也许对你有用:/article/2973927.html
在那边日志里头我举了个场景,来说明CLOSE_WAIT和TIME_WAIT的区别,这里重新描述一下:
服务器A是一台爬虫服务器,它使用简单的HttpClient去请求资源服务器B上面的apache获取文件资源,正常情况下,如果请求成功,那么在抓取完资源后,服务器A会主动发出关闭连接的请求,这个时候就是主动关闭连接,服务器A的连接状态我们可以看到是TIME_WAIT。如果一旦发生异常呢?假设请求的资源服务器B上并不存在,那么这个时候就会由服务器B发出关闭连接的请求,服务器A就是被动的关闭了连接,如果服务器A被动关闭连接之后程序员忘了让HttpClient释放连接,那就会造成CLOSE_WAIT的状态了。

所以如果将大量CLOSE_WAIT的解决办法总结为一句话那就是:查代码。因为问题出在服务器程序里头啊。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: