您的位置:首页 > 其它

回溯法-算法框架及基础

2013-01-23 01:39 387 查看
回溯法其实也是一种搜索算法,它可以方便的搜索解空间。

回溯法解题通常可以从以下三步入手:

1、针对问题,定义解空间

2、确定易于搜索的解空间结构

3、以深度优先的方式搜索解空间,并在搜索的过程中进行剪枝

回溯法通常在解空间树上进行搜索,而解空间树通常有子集树和排列树。

针对这两个问题,算法的框架基本如下:

用回溯法搜索子集合树的一般框架:

Cpp代码



void backtrack(int t){
if(t > n) output(x);
else{
for(int i = f(n,t); i <= g(n,t);i++){
x[t] = h(i);
if(constraint(t) && bound(t)) backtrack(t+1);
}
}
}

用回溯法搜索排列树的算法框架:

Cpp代码



void backtrack(int t){
if(t > n) output(x);
else{
for(int i = f(n,t); i <= g(n,t);i++){
swap(x[t],x[i]);
if(constraint(t) && bound(t)) backtrack(t+1);
swap(x[t],x[i]);
}
}
}

其中f(n,t),g(n,t)表示当前扩展结点处未搜索过的子树的起始标号和终止标号,

h(i)表示当前扩展节点处,x[t]第i个可选值。constraint(t)和bound(t)是当前

扩展结点处的约束函数和限界函数。constraint(t)返回true时,在当前扩展结点

x[1:t]取值满足约束条件,否则不满足约束条件,可减去相应的子树。bound(t)返

回的值为true时,在当前扩展结点x[1:x]处取值未使目标函数越界,还需要由backtrack(t+1)

对其相应的子树进一步搜索。

用回溯法其实质上是提供了搜索解空间的方法,当我们能够搜遍解空间时,

显然我们就能够找到最优的或者满足条件的解。这便是可行性的问题, 而效率可以

通过剪枝函数来降低。但事实上一旦解空间的结构确定了,很大程度上时间复杂度

也就确定了,所以选择易于搜索的解空间很重要。

下面我们看看两个最简单的回溯问题,他们也代表了两种搜索类型的问题:子集合问题和

排列问题。

第一个问题:

求集合s的所有子集(不包括空集),我们可以按照第一个框架来写代码:

Cpp代码



#include
using namespace std;

int s[3] = {1,3,6};
int x[3];
int N = 3;
void print(){
for(int j = 0; j < N; j++)
if(x[j] == 1)
cout << s[j] << " ";
cout << endl;
}

void subset(int i){
if(i >= N){
print();
return;
}

x[i] = 1;//搜索右子树
subset(i+1);
x[i] = 0;//搜索左子树
subset(i+1);
}

int main(){
subset(0);
return 0;
}

下面我们看第二个问题:排列的问题,求一个集合元素的全排列。

我们可以按照第二个框架写出代码:

Cpp代码



#include
using namespace std;

int a[4] = {1,2,3,4};
const int N = 4;

void print(){
for(int i = 0; i < N; i++)
cout << a[i] << " ";
cout << endl;
}

void swap(int *a,int i,int j){

int temp;
temp = a[i];
a[i] = a[j];
a[j] = temp;
}

void backtrack(int i){
if(i >= N){
print();
}
for(int j = i; j < N; j++){
swap(a,i,j);
backtrack(i+1);
swap(a,i,j);
}
}

int main(){
backtrack(0);
return 0;
}

这两个问题很有代表性,事实上有许多问题都是从这两个问题演变而来的。第一个问题,它穷举了所有问题的子集,这是所有第一种类型的基础,第二个问题,它给出了穷举所有排列的方法,这是所有的第二种类型的问题的基础。理解这两个问题,是回溯算法的基础.

下面看看一个较简单的问题:

整数集合s和一个整数sum,求集合s的所有子集su,使得su的元素之和为sum。

这个问题很显然是个子集合问题,我们很容易就可以把第一段代码修改成这个问题的代码:

Cpp代码



int sum = 10;
int r = 0;
int s[5] = {1,3,6,4,2};
int x[5];
int N = 5;

void print(){
for(int j = 0; j < N; j++)
if(x[j] == 1)
cout << s[j] << " ";
cout << endl;
}
void sumSet(int i){
if(i >= N){
if(sum == r) print();
return;
}
if(r < sum){//搜索右子树

r += s[i];
x[i] = 1;
sumSet(i+1);
r -= s[i];
}
x[i] = 0;//搜索左子树
sumSet(i+1);
}

int main(){
sumSet(0);
return 0;
}

八皇后问题

八皇后问题是一个古老而著名的问题,是回溯算法的典型例题。该问题是十九世纪著名的数学家高斯1850年提出:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上.

问题分析:

第一步 定义问题的解空间

这个问题解空间就是8个皇后在棋盘中的位置.

第二步 定义解空间的结构

可以使用8*8的数组,但由于任意两个皇后都不能在同行,我们可以用数组下标表示

行,数组的值来表示皇后放的列,故可以简化为一个以维数组x[9]。

第三步 以深度优先的方式搜索解空间,并在搜索过程使用剪枝函数来剪枝

根据条件:x[i] == x[k]判断处于同一列

abs(k-i) == abs(x[k]-x[i]判断是否处于同一斜线

我们很容易写出剪枝函数:

Cpp代码



bool canPlace(int k){
for(int i = 1; i < k; i++){

//判断处于同一列或同一斜线

if(x[i] == x[k] || abs(k-i) == abs(x[k]-x[i])) return false;

}
return true;

}

然后我们按照回溯框架一,很容易写出8皇后的回溯代码:

Cpp代码



void queen(int i){
if(i > 8){
print();
return;
}
for(int j = 1; j <= 8; j++){
x[i] = j;//记录所放的列

if(canPlace(i)) queen(i+1);
}
}

整个代码:

Cpp代码



#include<iostream>
#include<cmath>
using namespace std;

int x[9];
void print(){
for(int i = 1; i <= 8; i++)
cout << x[i] << " ";
cout << endl;
}

bool canPlace(int k){
for(int i = 1; i < k; i++){
//判断处于同一列或同一斜线

if(x[i] == x[k] || abs(k-i) == abs(x[k]-x[i]))
return false;
}
return true;
}

void queen(int i){
if(i > 8){
print();
return;
}
for(int j = 1; j <= 8; j++){
x[i] = j;
if(canPlace(i)) queen(i+1);
}
}

int main(){
queen(1);
return 0;
}

0-1背包问题

0-1背包问题:给定n种物品和一背包.物品i的重量是wi, 其价值为ui,背包的容量为C.

问如何选择装入背包的物品,使得装入背包中物品的总价值最大?

分析:

0-1背包是子集合选取问题,一般情况下0-1背包是个NP问题.

第一步 确定解空间:装入哪几种物品

第二步 确定易于搜索的解空间结构:

可以用数组p,w分别表示各个物品价值和重量。

用数组x记录,是否选种物品

第三步 以深度优先的方式搜索解空间,并在搜索的过程中剪枝

我们同样可以使用子集合问题的框架来写我们的代码,和前面子集和数问题相差无几。

Cpp代码



#include<iostream>
#include<algorithm>

using namespace std;

class Knapsack{

public:

Knapsack(double *pp,double *ww,int nn,double cc){

p = pp;
w = ww;
n = nn;
c = cc;
cw = 0;
cp = 0;
bestp = 0;
x = new int
;

cx = new int
;

}

void knapsack(){

backtrack(0);
}

void backtrack(int i){//回溯法

if(i > n){

if(cp > bestp){

bestp = cp;
for(int i = 0; i < n; i++)

x[i] = cx[i];
}
return;

}

if(cw + w[i] <= c){//搜索右子树

cw += w[i];
cp += p[i];
cx[i] = 1;
backtrack(i+1);
cw -= w[i];
cp -= p[i];
}
cx[i] = 0;
backtrack(i+1);//搜索左子树

}

void printResult(){

cout << "可以装入的最大价值为:" << bestp << endl;

cout << "装入的物品依次为:";

for(int i = 0; i < n; i++){

if(x[i] == 1)

cout << i+1 << " ";

}
cout << endl;
}

private:

double *p,*w;

int n;

double c;

double bestp,cp,cw;//最大价值,当前价值,当前重量

int *x,*cx;

};

int main(){

  double p[4] = {9,10,7,4},w[4] = {3,5,2,1};

Knapsack ks = Knapsack(p,w,4,7);
ks.knapsack();
  ks.printResult();
  return 0;

}
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: