您的位置:首页 > 运维架构 > Linux

Linux设备模型之input子系统详解(三)

2012-08-09 09:18 417 查看
十:evdev设备结点的open()操作

对主设备号为INPUT_MAJOR的设备节点进行操作,会将操作集转换成handler的操作集.在evdev中,这个操作集就是evdev_fops.对应的open函数如下示:

static int evdev_open(struct inode *inode, struct file *file)

{

struct evdev *evdev;

struct evdev_client *client;

int i = iminor(inode) - EVDEV_MINOR_BASE;

int error;

if (i >= EVDEV_MINORS)

return -ENODEV;

error = mutex_lock_interruptible(&evdev_table_mutex);

if (error)

return error;

evdev = evdev_table[i];

if (evdev)

get_device(&evdev->dev);

mutex_unlock(&evdev_table_mutex);

if (!evdev)

return -ENODEV;

client = kzalloc(sizeof(struct evdev_client), GFP_KERNEL);

if (!client) {

error = -ENOMEM;

goto err_put_evdev;

}

spin_lock_init(&client->buffer_lock);

client->evdev = evdev;

evdev_attach_client(evdev, client);

error = evdev_open_device(evdev);

if (error)

goto err_free_client;

file->private_data = client;

return 0;

err_free_client:

evdev_detach_client(evdev, client);

kfree(client);

err_put_evdev:

put_device(&evdev->dev);

return error;

}

iminor(inode) - EVDEV_MINOR_BASE就得到了在evdev_table[ ]中的序号.然后将数组中对应的evdev取出.递增devdev中device的引用计数.

分配并初始化一个client.并将它和evdev关联起来: client->evdev指向它所表示的evdev. 将client挂到evdev->client_list上. 将client赋为file的私有区.

对应handle的打开是在此evdev_open_device()中完成的.代码如下:

static int evdev_open_device(struct evdev *evdev)

{

int retval;

retval = mutex_lock_interruptible(&evdev->mutex);

if (retval)

return retval;

if (!evdev->exist)

retval = -ENODEV;

else if (!evdev->open++) {

retval = input_open_device(&evdev->handle);

if (retval)

evdev->open--;

}

mutex_unlock(&evdev->mutex);

return retval;

}

如果evdev是第一次打开,就会调用input_open_device()打开evdev对应的handle.跟踪一下这个函数:

int input_open_device(struct input_handle *handle)

{

struct input_dev *dev = handle->dev;

int retval;

retval = mutex_lock_interruptible(&dev->mutex);

if (retval)

return retval;

if (dev->going_away) {

retval = -ENODEV;

goto out;

}

handle->open++;

if (!dev->users++ && dev->open)

retval = dev->open(dev);

if (retval) {

dev->users--;

if (!--handle->open) {

/*

* Make sure we are not delivering any more events

* through this handle

*/

synchronize_rcu();

}

}

out:

mutex_unlock(&dev->mutex);

return retval;

}

在这个函数中可以看到.递增handle的打开计数.如果是第一次打开.则调用input device的open()函数

(如果已经赋值的话,但是我在akm8976.c中没有看到对input device的open函数指针赋值的地方,所以这里有个问题:open一般是用来干嘛的? ).

十一:evdev的事件处理

经过上面的分析.每当input device上报一个事件时,会将其交给和它匹配的handler的event函数处理.在evdev中.这个event函数对应的代码为:

static void evdev_event(struct input_handle *handle, unsigned int type, unsigned int code, int value)

{

struct evdev *evdev = handle->private;

struct evdev_client *client;

struct input_event event;

do_gettimeofday(&event.time);

event.type = type;

event.code = code;

event.value = value;

rcu_read_lock();

client = rcu_dereference(evdev->grab);

if (client)

evdev_pass_event(client, &event);

else

list_for_each_entry_rcu(client, &evdev->client_list, node)

evdev_pass_event(client, &event);

rcu_read_unlock();

wake_up_interruptible(&evdev->wait);

}

首先构造一个struct input_event结构.并设备它的type.code,value为处理事件的相关属性.如果该设备被强制设置了handle.则调用与之对应的client.

在evdev_open的时候.会初始化clinet并将其链入到evdev->client_list. 这样,就可以通过evdev->client_list找到这个client.

对于找到的每一个client都会调用evdev_pass_event( ).代码如下:

static void evdev_pass_event(struct evdev_client *client, struct input_event *event)

{

/*

* Interrupts are disabled, just acquire the lock

*/

spin_lock(&client->buffer_lock);

client->buffer[client->head++] = *event;

client->head &= EVDEV_BUFFER_SIZE - 1;

spin_unlock(&client->buffer_lock);

kill_fasync(&client->fasync, SIGIO, POLL_IN);

}

这里的操作很简单.就是将event保存到client->buffer中.client->head就是当前的数据位置.注意这里是一个环形缓存区.写数据是从client->head写.而读数据则是从client->tail中读.

十二:设备节点的read处理

对于evdev设备节点的read操作都会由evdev_read()完成.它的代码如下:

static ssize_t evdev_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)

{

struct evdev_client *client = file->private_data;

struct evdev *evdev = client->evdev;

struct input_event event;

int retval;

if (count < evdev_event_size())

return -EINVAL;

if (client->head == client->tail && evdev->exist &&

(file->f_flags & O_NONBLOCK))

return -EAGAIN;

retval = wait_event_interruptible(evdev->wait,

client->head != client->tail || !evdev->exist);

if (retval)

return retval;

if (!evdev->exist)

return -ENODEV;

while (retval + evdev_event_size() <= count &&

evdev_fetch_next_event(client, &event)) {

if (evdev_event_to_user(buffer + retval, &event))

return -EFAULT;

retval += evdev_event_size();

}

return retval;

}

首先,它判断缓存区大小是否足够.在读取数据的情况下,可能当前缓存区内没有数据可读.在这里先睡眠等待缓存区中有数据.如果在睡眠的时候,.条件满足.是不会进行睡眠状态而直接返回的.

然后根据read()提够的缓存区大小.将client中的数据写入到用户空间的缓存区中.

十三:设备节点的写操作

同样.对设备节点的写操作是由evdev_write()完成的.代码如下:

static ssize_t evdev_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos)

{

struct evdev_client *client = file->private_data;

struct evdev *evdev = client->evdev;

struct input_event event;

int retval;

retval = mutex_lock_interruptible(&evdev->mutex);

if (retval)

return retval;

if (!evdev->exist) {

retval = -ENODEV;

goto out;

}

while (retval < count) {

if (evdev_event_from_user(buffer + retval, &event)) {

retval = -EFAULT;

goto out;

}

input_inject_event(&evdev->handle,

event.type, event.code, event.value);

retval += evdev_event_size();

}

out:

mutex_unlock(&evdev->mutex);

return retval;

}

首先取得操作设备文件所对应的evdev.

实际上,这里写入设备文件的是一个event结构的数组.在之前分析过,这个结构里包含了事件的type.code和event.

将写入设备的event数组取出.然后对每一项调用event_inject_event().

这个函数的操作和input_event()差不多.就是将第一个参数handle转换为输入设备结构.然后这个设备再产生一个事件.

代码如下:

void input_inject_event(struct input_handle *handle, unsigned int type, unsigned int code, int value)

{

struct input_dev *dev = handle->dev;

struct input_handle *grab;

unsigned long flags;

if (is_event_supported(type, dev->evbit, EV_MAX)) {

spin_lock_irqsave(&dev->event_lock, flags);

rcu_read_lock();

grab = rcu_dereference(dev->grab);

if (!grab || grab == handle)

input_handle_event(dev, type, code, value);

rcu_read_unlock();

spin_unlock_irqrestore(&dev->event_lock, flags);

}

}

这里可以跟input_event()对比一下,这里设备可以产生任意事件,而不需要和设备所支持的事件类型相匹配.

由此可见.对于写操作而言.就是让与设备文件相关的输入设备产生一个特定的事件.

将上述设备文件的操作过程以图的方式表示如下:



十四:小结

在这一节点,分析了整个input子系统的架构,各个环节的流程.最后还以evdev为例.将各个流程贯穿在一起.以加深对input子系统的 理解.由此也可以看出.linux设备驱动采用了分层的模式.从最下层的设备模型到设备,驱动,总线再到input子系统最后到input device.这样的分层结构使得最上层的驱动不必关心下层是怎么实现的.而下层驱动又为多种型号同样功能的驱动提供了一个统一的接口.
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: