您的位置:首页 > 其它

[源码解析] NVIDIA HugeCTR,GPU版本参数服务器--- (4)

2022-02-21 19:36 387 查看

[源码解析] NVIDIA HugeCTR,GPU版本参数服务器--- (4)

[toc]

0x00 摘要

在这个系列中,我们介绍了 HugeCTR,这是一个面向行业的推荐系统训练框架,针对具有模型并行嵌入和数据并行密集网络的大规模 CTR 模型进行了优化。

本文主要介绍流水线的前两级,最后一级将会独立成文。其中借鉴了HugeCTR源码阅读 这篇大作,特此感谢。

本系列其他文章如下:

[源码解析] NVIDIA HugeCTR,GPU 版本参数服务器 --(1)

[源码解析] NVIDIA HugeCTR,GPU版本参数服务器--- (2)

[源码解析] NVIDIA HugeCTR,GPU版本参数服务器---(3)

0x01 总体流程

由于高效的数据交换和三级流水线,HugeCTR的可扩展性和活跃GPU的数量都有所增加。此流水线包括三级:

  • 从文件读取数据。
  • 从主机到设备的数据传输(节点间和节点内)。
  • 利用GPU计算。

的数据读取重叠,并训练GPU。下图显示了HugeCTR的可扩展性,批量大小为16384,在DGX1服务器上有七层。

0x02 DataReader

DataReader 被用来把数据从数据集拷贝到嵌入层。其是流水线的入口,包括了流水线的前面两步骤:读取文件和拷贝到GPU。

Figure 5. HugeCTR training pipeline with its data reader.

2.1 定义

为了分析需要,我们只给出成员变量,方法我们会在使用时候具体介绍。

从动态角度看,成员变量之中重要的是以下两个:

  • worker_group :工作线程组,负责把数据从dataset文件读取到内存之中,这个可以认为是流水线的第一级。之前的版本之中有一个HeapEx数据结构用来做中间缓存,目前这个数据结构已经移除。
  • data_collector_ :拥有一个线程,负责把数据拷贝到GPU之中。这个可以认为是流水线的第二级

从静态角度看,主要是以下三个buffer:

  • std::vector<std::shared_ptr<ThreadBuffer>> thread_buffers_
    :线程内部使用的buffer。
  • std::shared_ptr<BroadcastBuffer> broadcast_buffer_
    :用来后续和collector交互,collector 把它作为中间buffer。
  • std::shared_ptr<DataReaderOutput> output_
    :reader的输出,训练最后读取的是这里。

以上三个buffer的数据流动是:ThreadBuffer --> BroadcastBuffer ---> DataReaderOutput

从资源角度看,则是:

  • std::shared_ptr resource_manager_ :这是 Session 的成员变量,在DataReader构造函数之中传递进来的。
  • const std::vector params_ :这是依据配置文件整理出来的sparse参数元信息。
/**
* @brief Data reading controller.
*
* Control the data reading from data set to embedding.
* An instance of DataReader will maintain independent
* threads for data reading (IDataReaderWorker)
* from dataset to heap. Meanwhile one independent
* thread consumes the data (DataCollector),
* and copy the data to GPU buffer.
*/
template <typename TypeKey>
class DataReader : public IDataReader {
private:
std::vector<std::shared_ptr<ThreadBuffer>> thread_buffers_;  // gpu_id -> thread_idx
std::shared_ptr<BroadcastBuffer> broadcast_buffer_;
std::shared_ptr<DataReaderOutput> output_;

std::shared_ptr<DataReaderWorkerGroup> worker_group_;
std::shared_ptr<DataCollector<TypeKey>> data_collector_; /**< pointer of DataCollector */

/* Each gpu will have several csr output for different embedding */
const std::vector<DataReaderSparseParam> params_;
std::shared_ptr<ResourceManager> resource_manager_; /**< gpu resource used in this data reader*/
const size_t batchsize_;                            /**< batch size */
const size_t label_dim_; /**< dimention of label e.g. 1 for BinaryCrossEntropy */
const size_t dense_dim_; /**< dimention of dense */
long long current_batchsize_;

bool repeat_;
std::string file_name_;
SourceType_t source_type_;
}

2.2 构建

对DataReader的构建分为两部分:

  • 在构造函数之中会: 对各种buffer进行配置。
  • 对构建DataCollector。
  • 在create_datareader之中会分别处理 train_data_reader和 evaluate_data_reader,也就是用于训练和评估的两个reader。然后会为他们建立workgroup。
  • 我们先省略对构造函数的分析,因为其牵扯到一系列数据结构。等介绍完数据结构之后,再进行论述。

    2.3 DataReaderSparseParam

    2.3.1 定义

    DataReaderSparseParam 是依据配置得到的Sparse参数的元信息,其主要成员变量如下:

    • sparse_name
      是其后续层引用的稀疏输入张量的名称。没有默认值,应由用户指定。

    • nnz_per_slot
      是每个插槽的指定sparse输入的最大特征数。

      'nnz_per_slot'可以是'int',即每个slot的平均nnz,因此每个实例的最大功能数应该是'nnz_per_slot*slot_num'。
    • 或者可以使用List[int]初始化'nnz_per_slot',则每个样本的最大特征数应为'sum(nnz_per_slot)',在这种情况下,数组'nnz_per_slot'的长度应与'slot_num'相同。
  • 'is_fixed_length'用于标识所有样本中每个插槽的categorical inputs是否具有相同的长度。如果不同的样本对于每个插槽具有相同数量的特征,则用户可以设置“is_fixed_length=True”,Hugetr可以使用此信息来减少数据传输时间。

  • slot_num
    指定用于数据集中此稀疏输入的插槽数。

      **注意:**如果指定了多个'DataReaderSparseParam',则任何一对'DataReaderSparseParam'之间都不应有重叠。比如,在[wdl样本](../samples/wdl/wdl.py)中,我们总共有27个插槽;我们将第一个插槽指定为"wide_data",将接下来的26个插槽指定为"deep_data"。
    struct DataReaderSparseParam {
    std::string top_name;
    std::vector<int> nnz_per_slot;
    bool is_fixed_length;
    int slot_num;
    
    DataReaderSparse_t type;
    int max_feature_num;
    int max_nnz;
    
    DataReaderSparseParam() {}
    DataReaderSparseParam(const std::string& top_name_, const std::vector<int>& nnz_per_slot_,
    bool is_fixed_length_, int slot_num_)
    : top_name(top_name_),
    nnz_per_slot(nnz_per_slot_),
    is_fixed_length(is_fixed_length_),
    slot_num(slot_num_),
    type(DataReaderSparse_t::Distributed) {
    max_feature_num = std::accumulate(nnz_per_slot.begin(), nnz_per_slot.end(), 0);
    max_nnz = *std::max_element(nnz_per_slot.begin(), nnz_per_slot.end());
    }
    
    DataReaderSparseParam(const std::string& top_name_, const int nnz_per_slot_,
    bool is_fixed_length_, int slot_num_)
    : top_name(top_name_),
    nnz_per_slot(slot_num_, nnz_per_slot_),
    is_fixed_length(is_fixed_length_),
    slot_num(slot_num_),
    type(DataReaderSparse_t::Distributed) {
    max_feature_num = std::accumulate(nnz_per_slot.begin(), nnz_per_slot.end(), 0);
    max_nnz = *std::max_element(nnz_per_slot.begin(), nnz_per_slot.end());
    }
    };

    2.3.2 使用

    之前提到了Parser是解析配置文件,HugeCTR 也支持代码设置,比如下面就设定了两个DataReaderSparseParam,也有对应的DistributedSlotSparseEmbeddingHash。

    model = hugectr.Model(solver, reader, optimizer)
    model.add(hugectr.Input(label_dim = 1, label_name = "label",
    dense_dim = 13, dense_name = "dense",
    data_reader_sparse_param_array =
    [hugectr.DataReaderSparseParam("wide_data", 30, True, 1),
    hugectr.DataReaderSparseParam("deep_data", 2, False, 26)]))
    model.add(hugectr.SparseEmbedding(embedding_type = hugectr.Embedding_t.DistributedSlotSparseEmbeddingHash,
    workspace_size_per_gpu_in_mb = 23,
    embedding_vec_size = 1,
    combiner = "sum",
    sparse_embedding_name = "sparse_embedding2",
    bottom_name = "wide_data",
    optimizer = optimizer))
    model.add(hugectr.SparseEmbedding(embedding_type = hugectr.Embedding_t.DistributedSlotSparseEmbeddingHash,
    workspace_size_per_gpu_in_mb = 358,
    embedding_vec_size = 16,
    combiner = "sum",
    sparse_embedding_name = "sparse_embedding1",
    bottom_name = "deep_data",
    optimizer = optimizer))

    0x03 DataReader Buffer 机制

    我们接下来看看 DataReader 的若干Buffer,依赖于这些buffer,HugeCTR实现了流水线的前两级。

    3.1 比对

    我们首先要做一个历史对比,看看这部分代码的发展脉络。我们先看看3.1版本的代码。DataReader 我们选取了部分成员变量。3.1 版本之前使用了一个heap进行操作,即下面的csr_heap_

    class DataReader : public IDataReader {
    std::shared_ptr<HeapEx<CSRChunk<TypeKey>>> csr_heap_; /**< heap to cache the data set */
    Tensors2<float> label_tensors_;                       /**< Label tensors for the usage of loss */
    std::vector<TensorBag2> dense_tensors_;               /**< Dense tensors for the usage of loss */
    /* Each gpu will have several csr output for different embedding */
    Tensors2<TypeKey> csr_buffers_; /**< csr_buffers contains row_offset_tensor and value_tensors */
    Tensors2<TypeKey> row_offsets_tensors_; /**< row offset tensors*/
    Tensors2<TypeKey> value_tensors_;       /**< value tensors */
    std::vector<std::shared_ptr<size_t>> nnz_array_;
    
    const size_t label_dim_; /**< dimention of label e.g. 1 for BinaryCrossEntropy */
    const size_t dense_dim_; /**< dimention of dense */
    }

    我们再看看3.2.1版本的代码,也选取了部分成员变量。

    template <typename TypeKey>
    class DataReader : public IDataReader {
    std::vector<std::shared_ptr<ThreadBuffer>> thread_buffers_;  // gpu_id -> thread_idx
    std::shared_ptr<BroadcastBuffer> broadcast_buffer_;
    std::shared_ptr<DataReaderOutput> output_;
    
    const size_t label_dim_; /**< dimention of label e.g. 1 for BinaryCrossEntropy */
    const size_t dense_dim_; /**< dimention of dense */
    }

    3.2.1 这里是:

    • label_tensors_
      ,
      dense_tensors_
      移动到 AsyncReader。
    • 把 csr_heap_ 用
      thread_buffers_
      broadcast_buffer_
      output_
      等进行替代。
    • 把 row_offsets_tensors_,value_tensors_,nnz_array_ 等等用 ThreadBuffer,BroadcastBuffer,DataReaderOutput 之中的 SparseTensorBag 来包括,统一管理 CSR。

    3.2 Buffer 相关类

    我们依据上面的历史版本比对来看看。

    • 在之前版本(比如3.1)之中,存在一个 HeapEX 类,其实现了 CPU 到 GPU 之间的一个数据缓存功能。
    • 在最新版本之中,改为一系列 buffer 相关类,比如 ThreadBuffer 和 BroadcastBuffer,其状态都是由 BufferState 实现的。
    enum class BufferState : int { FileEOF, Reading, ReadyForRead, Writing, ReadyForWrite };

    以下是三个buffer的定义。

    struct ThreadBuffer {
    std::vector<SparseTensorBag> device_sparse_buffers;  // same number as embedding number
    std::vector<unsigned char> is_fixed_length;          // same number as embedding number
    TensorBag2 device_dense_buffers;
    std::atomic<BufferState> state;
    long long current_batch_size;
    int batch_size;
    size_t param_num;
    int label_dim;
    int dense_dim;
    int batch_size_start_idx;  // dense buffer
    int batch_size_end_idx;
    };
    struct BroadcastBuffer {
    std::vector<SparseTensorBag>
    sparse_buffers;  // same number as (embedding number * local device number)
    std::vector<unsigned char> is_fixed_length;        // same number as embedding number
    std::vector<TensorBag2> dense_tensors;             // same number as local device number
    std::vector<cudaEvent_t> finish_broadcast_events;  // same number as local device number
    std::atomic<BufferState> state;
    long long current_batch_size;
    size_t param_num;
    };
    struct DataReaderOutput {
    std::map<std::string, std::vector<SparseTensorBag>> sparse_tensors_map;
    std::vector<std::string> sparse_name_vec;
    std::vector<TensorBag2> label_tensors;
    std::vector<TensorBag2> dense_tensors;
    bool use_mixed_precision;
    int label_dense_dim;
    };

    以上这些类,对应了 DataReader 的以下成员变量。

    class DataReader : public IDataReader {
    private:
    std::vector<std::shared_ptr<ThreadBuffer>> thread_buffers_;  // gpu_id -> thread_idx
    std::shared_ptr<BroadcastBuffer> broadcast_buffer_;
    std::shared_ptr<DataReaderOutput> output_;
    }

    接下来,我们就一一分析。

    3.3 DataReader构造

    前面跳过了 DataReader 的构造函数,接下来我们接下来对构造函数进行分析,其主要功能就是为三种buffer来预留空间,分配内存,最后构建了collector。

    DataReader(int batchsize, size_t label_dim, int dense_dim,
    std::vector<DataReaderSparseParam> &params,
    const std::shared_ptr<ResourceManager> &resource_manager, bool repeat, int num_threads,
    bool use_mixed_precision)
    : broadcast_buffer_(new BroadcastBuffer()),
    output_(new DataReaderOutput()),
    params_(params),
    resource_manager_(resource_manager),
    batchsize_(batchsize),
    label_dim_(label_dim),
    dense_dim_(dense_dim),
    repeat_(repeat) {
    size_t local_gpu_count = resource_manager_->get_local_gpu_count();
    size_t total_gpu_count = resource_manager_->get_global_gpu_count();
    
    // batchsize_ is a multiple of total_gpu_count
    size_t batch_size_per_gpu = batchsize_ / total_gpu_count;
    
    // 1. 生成了一个临时变量buffs,用来具体分配内存,里面是若干 CudaAllocator,每个CudaAllocator对应了i个GPU
    std::vector<std::shared_ptr<GeneralBuffer2<CudaAllocator>>> buffs;
    // 先预留部分内存空间
    buffs.reserve(local_gpu_count);
    // 为每个GPU初始化一个GeneralBuffer2
    for (size_t i = 0; i < local_gpu_count; ++i) {
    buffs.push_back(GeneralBuffer2<CudaAllocator>::create());
    }
    
    // 2.预留buffer
    // 处理 thread_buffers_
    thread_buffers_.reserve(num_threads);
    for (int i = 0; i < num_threads; ++i) {
    // a worker may maintain multiple buffers on device i % local_gpu_count
    auto local_gpu = resource_manager_->get_local_gpu(i % local_gpu_count);
    CudaCPUDeviceContext context(local_gpu->get_device_id());
    auto &buff = buffs[i % local_gpu_count]; // 找到对应GPU对应的CudaAllocator,进行分配
    std::shared_ptr<ThreadBuffer> current_thread_buffer = std::make_shared<ThreadBuffer>();
    thread_buffers_.push_back(current_thread_buffer);
    
    current_thread_buffer->device_sparse_buffers.reserve(params.size());
    current_thread_buffer->is_fixed_length.reserve(params.size()); // vector的reserve
    for (size_t param_id = 0; param_id < params.size(); ++param_id) {
    auto &param = params_[param_id];
    SparseTensor<TypeKey> temp_sparse_tensor;
    // 预留内存
    buff->reserve({(size_t)batchsize, (size_t)param.max_feature_num}, param.slot_num,
    &temp_sparse_tensor);
    current_thread_buffer->device_sparse_buffers.push_back(temp_sparse_tensor.shrink());
    current_thread_buffer->is_fixed_length.push_back(param.is_fixed_length);
    }
    Tensor2<float> temp_dense_tensor;
    // 预留内存
    buff->reserve({batch_size_per_gpu * local_gpu_count, label_dim + dense_dim},
    &temp_dense_tensor);
    current_thread_buffer->device_dense_buffers = temp_dense_tensor.shrink();
    current_thread_buffer->state.store(BufferState::ReadyForWrite);
    current_thread_buffer->current_batch_size = 0;
    current_thread_buffer->batch_size = batchsize;
    current_thread_buffer->param_num = params.size();
    current_thread_buffer->label_dim = label_dim;
    current_thread_buffer->dense_dim = dense_dim;
    current_thread_buffer->batch_size_start_idx =
    batch_size_per_gpu * resource_manager_->get_gpu_global_id_from_local_id(0);
    current_thread_buffer->batch_size_end_idx =
    current_thread_buffer->batch_size_start_idx + batch_size_per_gpu * local_gpu_count;
    }
    
    // 处理 broadcast buffer,注意这里的reserve是 vector数据结构的方法,不是预留内存
    broadcast_buffer_->sparse_buffers.reserve(local_gpu_count * params.size());
    broadcast_buffer_->is_fixed_length.reserve(local_gpu_count * params.size());
    broadcast_buffer_->dense_tensors.reserve(local_gpu_count);
    broadcast_buffer_->finish_broadcast_events.resize(local_gpu_count);
    broadcast_buffer_->state.store(BufferState::ReadyForWrite);
    broadcast_buffer_->current_batch_size = 0;
    broadcast_buffer_->param_num = params.size();
    
    // 处理 output buffer,注意这里的reserve是 vector数据结构的方法,不是预留内存
    output_->dense_tensors.reserve(local_gpu_count);
    output_->label_tensors.reserve(local_gpu_count);
    output_->use_mixed_precision = use_mixed_precision;
    output_->label_dense_dim = label_dim + dense_dim;
    // 预留sparse tensor,注意这里的reserve是 vector数据结构的方法,不是预留内存
    for (size_t param_id = 0; param_id < params.size(); ++param_id) {
    auto &param = params_[param_id];
    output_->sparse_tensors_map[param.top_name].reserve(local_gpu_count);
    output_->sparse_name_vec.push_back(param.top_name);
    }
    
    // 遍历本地的 GPU
    for (size_t local_id = 0; local_id < local_gpu_count; ++local_id) {
    // 还是需要针对每一个GPU,找到对应的CudaAllocator进行分配
    auto local_gpu = resource_manager_->get_local_gpu(local_id);
    CudaDeviceContext ctx(local_gpu->get_device_id());
    auto &buff = buffs[local_id];
    
    for (size_t param_id = 0; param_id < params.size(); ++param_id) {
    auto &param = params_[param_id];
    SparseTensor<TypeKey> temp_sparse_tensor;
    // 给broadcast_buffer_分配内存
    buff->reserve({(size_t)batchsize, (size_t)param.max_feature_num}, param.slot_num,
    &temp_sparse_tensor);
    broadcast_buffer_->sparse_buffers.push_back(temp_sparse_tensor.shrink());
    broadcast_buffer_->is_fixed_length.push_back(param.is_fixed_length);
    }
    Tensor2<float> temp_dense_tensor;
    buff->reserve({batch_size_per_gpu, label_dim + dense_dim}, &temp_dense_tensor);
    broadcast_buffer_->dense_tensors.push_back(temp_dense_tensor.shrink());
    
    CK_CUDA_THROW_(cudaEventCreateWithFlags(&broadcast_buffer_->finish_broadcast_events[local_id],
    cudaEventDisableTiming));
    
    for (size_t param_id = 0; param_id < params.size(); ++param_id) {
    auto &param = params_[param_id];
    SparseTensor<TypeKey> temp_sparse_tensor;
    // 预留内存
    buff->reserve({(size_t)batchsize, (size_t)param.max_feature_num}, param.slot_num,
    &temp_sparse_tensor);
    output_->sparse_tensors_map[param.top_name].push_back(temp_sparse_tensor.shrink());
    }
    
    Tensor2<float> label_tensor;
    // 预留内存
    buff->reserve({batch_size_per_gpu, label_dim}, &label_tensor);
    output_->label_tensors.push_back(label_tensor.shrink());
    
    if (use_mixed_precision) {
    Tensor2<__half> dense_tensor;
    // 预留内存
    buff->reserve({(size_t)batch_size_per_gpu, (size_t)dense_dim}, &dense_tensor);
    output_->dense_tensors.push_back(dense_tensor.shrink());
    } else {
    Tensor2<float> dense_tensor;
    // 预留内存
    buff->reserve({(size_t)batch_size_per_gpu, (size_t)dense_dim}, &dense_tensor);
    output_->dense_tensors.push_back(dense_tensor.shrink());
    }
    
    buff->allocate(); // 3. 分配内存
    }
    
    // 4. 构建DataCollector
    data_collector_ = std::make_shared<DataCollector<TypeKey>>(thread_buffers_, broadcast_buffer_,
    output_, resource_manager);
    return;
    }

    我们接下来会仔细分一下构造代码之中的各个部分。

    3.3.1 辅助 GeneralBuffer2

    首先我们分析上面代码之中buffs部分,这个变量作用就是统一分配内存。

    // 1. 生成了一个临时变量buffs
    std::vector<std::shared_ptr<GeneralBuffer2<CudaAllocator>>> buffs;
    // 先预留部分容量大小
    buffs.reserve(local_gpu_count);
    // 为每个GPU初始化一个GeneralBuffer2
    for (size_t i = 0; i < local_gpu_count; ++i) {
    buffs.push_back(GeneralBuffer2<CudaAllocator>::create());
    }

    3.3.2 ThreadBuffer

    然后我们看看处理 thread_buffers_ 部分,这里是为线程buffer进行处理。我们首先获取ThreadBuffer类定义如下,后面分析时候可以比对。

    struct ThreadBuffer {
    std::vector<SparseTensorBag> device_sparse_buffers;  // same number as embedding number
    std::vector<unsigned char> is_fixed_length;          // same number as embedding number
    TensorBag2 device_dense_buffers;
    std::atomic<BufferState> state;
    long long current_batch_size;
    int batch_size;
    size_t param_num;
    int label_dim;
    int dense_dim;
    int batch_size_start_idx;  // dense buffer
    int batch_size_end_idx;
    };

    其次,具体构建函数中的逻辑如下:

    • 首先,对于 thread_buffers_ 这个vector,会拓展 vector 容量到线程数大小。
    • 拿到本线程(或者说是本GPU)在buffs之中对应的buffer,赋值到 buff。
    • 对于每一个线程,会生成一个ThreadBuffer,命名为current_thread_buffer,放入到 thread_buffers_ 之中。
    • 对于每一个 ThreadBuffer,预留 ThreadBuffer 的device_sparse_buffers 和 is_fixed_length 这两个 vector 的容量大小。
    • 遍历sparse参数,对于每一个参数,会建立一个临时张量,并且通过 buff 预留内存(CPU或者GPU),然后把此临时张量放入device_sparse_buffers。
    • 建立一个针对dense的张量,并且通过 buff 预留张量内存,把临时张量放入device_dense_buffers。
    • 设置current_thread_buffer 状态。
    • 设置 current_thread_buffer 其他信息。
    // 处理 thread_buffers_,会拓展 vector 容量到线程数大小
    thread_buffers_.reserve(num_threads);
    for (int i = 0; i < num_threads; ++i) {  // 遍历线程
    // a worker may maintain multiple buffers on device i % local_gpu_count
    auto local_gpu = resource_manager_->get_local_gpu(i % local_gpu_count);
    CudaCPUDeviceContext context(local_gpu->get_device_id());
    auto &buff = buffs[i % local_gpu_count]; // 拿到本线程(或者说是本GPU)在buffs之中对应的buffer
    // 生成一个ThreadBuffer,存入到thread_buffers_
    std::shared_ptr<ThreadBuffer> current_thread_buffer = std::make_shared<ThreadBuffer>();
    thread_buffers_.push_back(current_thread_buffer);
    
    // 预留 ThreadBuffer 的device_sparse_buffers 和 is_fixed_length 这两个 vector 的容量大小
    current_thread_buffer->device_sparse_buffers.reserve(params.size());
    current_thread_buffer->is_fixed_length.reserve(params.size());
    
    // 遍历参数
    for (size_t param_id = 0; param_id < params.size(); ++param_id) {
    auto &param = params_[param_id];
    SparseTensor<TypeKey> temp_sparse_tensor;
    // 建立一个临时张量,并且预留内存(CPU或者GPU)
    buff->reserve({(size_t)batchsize, (size_t)param.max_feature_num}, param.slot_num,
    &temp_sparse_tensor);
    // 把张量放入device_sparse_buffers
    current_thread_buffer->device_sparse_buffers.push_back(temp_sparse_tensor.shrink());
    current_thread_buffer->is_fixed_length.push_back(param.is_fixed_length);
    }
    
    // 建立一个针对dense的张量
    Tensor2<float> temp_dense_tensor;
    // 预留张量内存
    buff->reserve({batch_size_per_gpu * local_gpu_count, label_dim + dense_dim},
    &temp_dense_tensor);
    // 把临时张量放入device_dense_buffers
    current_thread_buffer->device_dense_buffers = temp_dense_tensor.shrink();
    // 设置状态
    current_thread_buffer->state.store(BufferState::ReadyForWrite);
    // 设置其他信息
    current_thread_buffer->current_batch_size = 0;
    current_thread_buffer->batch_size = batchsize;
    current_thread_buffer->param_num = params.size();
    current_thread_buffer->label_dim = label_dim;
    current_thread_buffer->dense_dim = dense_dim;
    current_thread_buffer->batch_size_start_idx =
    batch_size_per_gpu * resource_manager_->get_gpu_global_id_from_local_id(0);
    current_thread_buffer->batch_size_end_idx =
    current_thread_buffer->batch_size_start_idx + batch_size_per_gpu * local_gpu_count;
    }

    此时如下,注意,DataReader 包括多个 ThreadBuffer。

    3.3.3 BroadcastBuffer

    接下来看看如何构建BroadcastBuffer。

    BroadcastBuffer定义如下:

    struct BroadcastBuffer {
    std::vector<SparseTensorBag>
    sparse_buffers;  // same number as (embedding number * local device number)
    std::vector<unsigned char> is_fixed_length;        // same number as embedding number
    std::vector<TensorBag2> dense_tensors;             // same number as local device number
    std::vector<cudaEvent_t> finish_broadcast_events;  // same number as local device number
    std::atomic<BufferState> state;
    long long current_batch_size;
    size_t param_num;
    };

    按照构建代码来说,这里只是做了一些预留和设置,没有涉及内存,内存在后续会统一处理。

    // 处理 broadcast buffer
    // 预留vector的容量
    broadcast_buffer_->sparse_buffers.reserve(local_gpu_count * params.size());
    // 预留vector的容量
    broadcast_buffer_->is_fixed_length.reserve(local_gpu_count * params.size());
    // 预留vector的容量
    broadcast_buffer_->dense_tensors.reserve(local_gpu_count);
    broadcast_buffer_->finish_broadcast_events.resize(local_gpu_count);
    // 设置状态
    broadcast_buffer_->state.store(BufferState::ReadyForWrite);
    broadcast_buffer_->current_batch_size = 0;
    broadcast_buffer_->param_num = params.size();

    3.3.4 DataReaderOutput

    我们接着看看如何构建DataReaderOutput。

    struct DataReaderOutput {
    std::map<std::string, std::vector<SparseTensorBag>> sparse_tensors_map;
    std::vector<std::string> sparse_name_vec;
    std::vector<TensorBag2> label_tensors;
    std::vector<TensorBag2> dense_tensors;
    bool use_mixed_precision;
    int label_dense_dim;
    };

    按照构建代码来说,这里只是做了一些预留和设置,没有涉及内存,内存在后续会统一处理。

    output_->dense_tensors.reserve(local_gpu_count); // 预留vector的容量
    output_->label_tensors.reserve(local_gpu_count); // 预留vector的容量
    output_->use_mixed_precision = use_mixed_precision;
    output_->label_dense_dim = label_dim + dense_dim;
    for (size_t param_id = 0; param_id < params.size(); ++param_id) {
    auto &param = params_[param_id];
    
    output_->sparse_tensors_map[param.top_name].reserve(local_gpu_count);
    output_->sparse_name_vec.push_back(param.top_name);
    }

    3.3.5 预留和分配

    这里会对 broadcast 和 output 进行预留,这里统一分配内存。

    for (size_t local_id = 0; local_id < local_gpu_count; ++local_id) { // 遍历GPU
    auto local_gpu = resource_manager_->get_local_gpu(local_id);
    CudaDeviceContext ctx(local_gpu->get_device_id());
    auto &buff = buffs[local_id]; // 获取临时buffs之中对应某一个本地gpu的allocator
    
    for (size_t param_id = 0; param_id < params.size(); ++param_id) {
    auto &param = params_[param_id];
    SparseTensor<TypeKey> temp_sparse_tensor;
    // 分配sparse内存
    buff->reserve({(size_t)batchsize, (size_t)param.max_feature_num}, param.slot_num,
    &temp_sparse_tensor);
    // 赋值到broadcast 之上
    broadcast_buffer_->sparse_buffers.push_back(temp_sparse_tensor.shrink());
    broadcast_buffer_->is_fixed_length.push_back(param.is_fixed_length);
    }
    // 分配dense内存
    Tensor2<float> temp_dense_tensor;
    buff->reserve({batch_size_per_gpu, label_dim + dense_dim}, &temp_dense_tensor);
    // 赋值到broadcast 之上
    broadcast_buffer_->dense_tensors.push_back(temp_dense_tensor.shrink());
    
    CK_CUDA_THROW_(cudaEventCreateWithFlags(&broadcast_buffer_->finish_broadcast_events[local_id],
    cudaEventDisableTiming));
    
    for (size_t param_id = 0; param_id < params.size(); ++param_id) {
    auto &param = params_[param_id];
    
    // 分配sparse内存
    SparseTensor<TypeKey> temp_sparse_tensor;
    buff->reserve({(size_t)batchsize, (size_t)param.max_feature_num}, param.slot_num,
    &temp_sparse_tensor);
    // 赋值到output之上
    output_->sparse_tensors_map[param.top_name].push_back(temp_sparse_tensor.shrink());
    }
    
    // 分配label的内存
    Tensor2<float> label_tensor;
    buff->reserve({batch_size_per_gpu, label_dim}, &label_tensor);
    // 赋值到output之上
    output_->label_tensors.push_back(label_tensor.shrink());
    
    if (use_mixed_precision) {
    Tensor2<__half> dense_tensor;
    // 分配dense内存
    buff->reserve({(size_t)batch_size_per_gpu, (size_t)dense_dim}, &dense_tensor);
    // 赋值到output之上
    output_->dense_tensors.push_back(dense_tensor.shrink());
    } else {
    Tensor2<float> dense_tensor;
    // 分配dense内存
    buff->reserve({(size_t)batch_size_per_gpu, (size_t)dense_dim}, &dense_tensor);
    // 赋值到output之上
    output_->dense_tensors.push_back(dense_tensor.shrink());
    }
    
    buff->allocate(); // 统一分配
    }

    预留buffer的具体逻辑如下:

    分配之后如下,需要注意的是,这里都是简化版本,没有体现出来多个本地GPU的状态。比如下面三个类的成员变量都会分配到多个本地GPU之上。

    // embedding number 指的是本模型之中,DataReaderSparseParam 的个数,就是有几个 embedding 层
    struct ThreadBuffer {
    std::vector<SparseTensorBag> device_sparse_buffers;  // same number as embedding number
    // device_sparse_buffers 会分配在多个本地GPU之上
    
    struct BroadcastBuffer {
    std::vector<SparseTensorBag>
    sparse_buffers;  // same number as (embedding number * local device number)
    // sparse_buffers 也会分配在多个本地GPU之上
    
    struct DataReaderOutput {
    std::map<std::string, std::vector<SparseTensorBag>> sparse_tensors_map;
    // 每个 sparse_tensors_map[param.top_name] 都会分配在多个本地GPU之上
    // 比如 output_->sparse_tensors_map[param.top_name].reserve(local_gpu_count);

    如下简化版本之中都只体现了一个GPU,这些buffer都是位于GPU之上。

    现在 DataReader 有了一系列buffer,我们接下来看看如何使用。

    0x04 DataReaderWorkerGroup

    DataReaderWorkerGroup 负责具体读数据操作。

    4.1 构建

    在 create_datareader 之中,有如下代码建立 DataReaderWorkerGroup,分别对应了三种group。

    switch (format) {
    case DataReaderType_t::Norm: {
    train_data_reader->create_drwg_norm(source_data, check_type, start_right_now);
    evaluate_data_reader->create_drwg_norm(eval_source, check_type, start_right_now);
    break;
    }
    case DataReaderType_t::Raw: {
    train_data_reader->create_drwg_raw(source_data, num_samples, float_label_dense, true,
    false);
    evaluate_data_reader->create_drwg_raw(eval_source, eval_num_samples, float_label_dense,
    false, false);
    break;
    }
    case DataReaderType_t::Parquet: {
    train_data_reader->create_drwg_parquet(source_data, slot_offset, true);
    evaluate_data_reader->create_drwg_parquet(eval_source, slot_offset, true);
    break;
    }

    我们用create_drwg_norm来继续分析,发现其构建了DataReaderWorkerGroupNorm。即,配置了 DataReader 之中的成员变量 worker_group_ 为一个 DataReaderWorkerGroupNorm。

    注意,这里传入的是

    thread_buffers_
    说明
    DataReaderWorkerGroup
    操作的就是DataReader 的
    thread_buffers_

    void create_drwg_norm(std::string file_name, Check_t check_type,
    bool start_reading_from_beginning = true) override {
    source_type_ = SourceType_t::FileList;
    worker_group_.reset(new DataReaderWorkerGroupNorm<TypeKey>(
    thread_buffers_, resource_manager_, file_name, repeat_, check_type, params_,
    start_reading_from_beginning));
    file_name_ = file_name;
    }

    4.2 DataReaderWorkerGroup 定义

    我们只看其成员变量,主要是 IDataReaderWorker,这就是具体读数据的wroker。

    class DataReaderWorkerGroup {
    std::vector<std::thread> data_reader_threads_; /**< A vector of the pointers of data reader .*/
    protected:
    int data_reader_loop_flag_{0}; /**< p_loop_flag a flag to control the loop */
    DataReaderType_t data_reader_type_;
    std::vector<std::shared_ptr<IDataReaderWorker>>
    data_readers_; /**< A vector of DataReaderWorker' pointer.*/
    std::shared_ptr<ResourceManager> resource_manager_;
    }

    4.3 DataReaderWorkerGroupNorm

    我们使用 DataReaderWorkerGroupNorm 来分析,其最重要的是构建 DataReaderWorker 时候,设定了每个DataReaderWorker 对应哪些GPU资源

    template <typename TypeKey>
    class DataReaderWorkerGroupNorm : public DataReaderWorkerGroup {
    std::string file_list_; /**< file list of data set */
    
    std::shared_ptr<Source> create_source(size_t worker_id, size_t num_worker,
    const std::string &file_name, bool repeat) override {
    return std::make_shared<FileSource>(worker_id, num_worker, file_name, repeat);
    }
    
    public:
    // Ctor
    DataReaderWorkerGroupNorm(const std::vector<std::shared_ptr<ThreadBuffer>> &output_buffers,
    const std::shared_ptr<ResourceManager> &resource_manager_,
    std::string file_list, bool repeat, Check_t check_type,
    const std::vector<DataReaderSparseParam> &params,
    bool start_reading_from_beginning = true)
    : DataReaderWorkerGroup(start_reading_from_beginning, DataReaderType_t::Norm) {
    
    int num_threads = output_buffers.size();
    size_t local_gpu_count = resource_manager_->get_local_gpu_count();
    
    // create data reader workers
    int max_feature_num_per_sample = 0;
    for (auto &param : params) {
    max_feature_num_per_sample += param.max_feature_num;
    }
    
    set_resource_manager(resource_manager_);
    for (int i = 0; i < num_threads; i++) {
    std::shared_ptr<IDataReaderWorker> data_reader(new DataReaderWorker<TypeKey>(
    // 这里设定了每个 DataReaderWorker 对应的 GPU 资源
    i, num_threads, resource_manager_->get_local_gpu(i % local_gpu_count),
    &data_reader_loop_flag_, output_buffers[i], file_list, max_feature_num_per_sample, repeat,
    check_type, params));
    data_readers_.push_back(data_reader);
    }
    create_data_reader_threads(); // 建立了多个工作线程
    }
    };

    4.4 建立线程

    create_data_reader_threads 建立了多个工作线程,设定了每个线程对应的 GPU 资源。

    /**
    * Create threads to run data reader workers
    */
    void create_data_reader_threads() {
    size_t local_gpu_count = resource_manager_->get_local_gpu_count();
    
    for (size_t i = 0; i < data_readers_.size(); ++i) {
    // 这里设定了每个线程对应的 GPU 资源
    auto local_gpu = resource_manager_->get_local_gpu(i % local_gpu_count);
    // 指定了线程主体函数
    data_reader_threads_.emplace_back(data_reader_thread_func_, data_readers_[i],
    &data_reader_loop_flag_, local_gpu->get_device_id());
    }
    }

    4.5 线程主体函数

    data_reader_thread_func_ 是工作线程的主体函数,里面设定了本线程的设备,然后调用了 IDataReaderWorker 完成读取数据。

    /**
    * A helper function to read data from dataset to heap in a new thread.
    * @param data_reader a pointer of data_reader.
    * @param p_loop_flag a flag to control the loop,
    and break loop when IDataReaderWorker is destroyed.
    */
    static void data_reader_thread_func_(const std::shared_ptr<IDataReaderWorker>& data_reader,
    int* p_loop_flag, int device_id) {
    try {
    CudaCPUDeviceContext context(device_id); // 设定了本线程的设备
    
    while ((*p_loop_flag) == 0) {
    usleep(2);
    }
    
    while (*p_loop_flag) {
    data_reader->read_a_batch(); // 然后开始读取文件数据
    }
    } catch (const std::runtime_error& rt_err) {
    std::cerr << rt_err.what() << std::endl;
    }
    }

    所以,这里就设定了哪个样本应该放到哪个卡上,例如,下面4个线程,分别对应了 GPU 0 和 GPU 1。

    4.6 DataReaderWorker

    DataReaderWorker 是解析数据的业务模块。IDataReaderWorker 是 基类,其buffer_是关键,其指向了ThreadBuffer。

    class IDataReaderWorker {
    std::shared_ptr<Source> source_; /**< source: can be file or network */
    
    int worker_id_;
    int worker_num_;
    std::shared_ptr<GPUResource> gpu_resource_; // 这是本worker的GPU资源
    
    bool is_eof_;
    int *loop_flag_;
    
    std::shared_ptr<ThreadBuffer> buffer_;
    
    IDataReaderWorker(const int worker_id, const int worker_num,
    const std::shared_ptr<GPUResource> &gpu_resource, bool is_eof, int *loop_flag,
    const std::shared_ptr<ThreadBuffer> &buff)
    : worker_id_(worker_id),
    worker_num_(worker_num),
    gpu_resource_(gpu_resource), // 设定GPU资源
    is_eof_(is_eof),
    loop_flag_(loop_flag),
    buffer_(buff) {}
    };

    DataReaderWorker 具体定义如下:

    template <class T>
    class DataReaderWorker : public IDataReaderWorker {
    private:
    DataSetHeader
    data_set_header_;  /**< the header of data set, which has main informations of a data file */
    size_t buffer_length_; /**< buffer size for internal use */
    Check_t check_type_;   /**< check type for data set */
    std::vector<DataReaderSparseParam> params_; /**< configuration of data reader sparse input */
    std::shared_ptr<Checker> checker_; /**< checker aim to perform error check of the input data */
    bool skip_read_{false};            /**< set to true when you want to stop the data reading */
    int current_record_index_{0};
    size_t total_slot_num_;
    std::vector<size_t> last_batch_nnz_;
    
    Tensor2<float> temp_host_dense_buffer_;  // read data to make checker move
    Tensor2<float> host_dense_buffer_;
    std::vector<CSR<T>> host_sparse_buffer_;
    }

    其构建代码如下,需要注意,

    • 有一个继承于基类的变量 std::shared_ptr buffer_ 指向的是 ThreadBuffer。
    • 变量 host_sparse_buffer_ 是构建在 Host 之上,而非GPU之上,这个 host_sparse_buffer_ 作用是文件中读取数据,解析成csr,放置到 host_sparse_buffer_ 之上。
    • 关于变量 DataReaderSparseParam 的说明,这是一个DataReaderSparseParam 数组,如果做如下设置,则 params_ 包含三个元素,分别对应分了 user, good, cate。
    model.add(hugectr.Input(label_dim = 1, label_name = "label",
    dense_dim = 0, dense_name = "dense",
    data_reader_sparse_param_array =
    [hugectr.DataReaderSparseParam("UserID", 1, True, 1),
    hugectr.DataReaderSparseParam("GoodID", 1, True, 11),
    hugectr.DataReaderSparseParam("CateID", 1, True, 11)]))

    DataReaderWorker 具体定义如下:

    DataReaderWorker(const int worker_id, const int worker_num,
    const std::shared_ptr<GPUResource>& gpu_resource, int* loop_flag,
    const std::shared_ptr<ThreadBuffer>& buffer, const std::string& file_list,
    size_t buffer_length, bool repeat, Check_t check_type,
    const std::vector<DataReaderSparseParam>& params)
    : IDataReaderWorker(worker_id, worker_num, gpu_resource, !repeat, loop_flag, buffer),
    buffer_length_(buffer_length),
    check_type_(check_type),
    params_(params),
    total_slot_num_(0),
    last_batch_nnz_(params.size(), 0) {
    
    total_slot_num_ = 0;
    for (auto& p : params) {
    total_slot_num_ += p.slot_num;
    }
    source_ = std::make_shared<FileSource>(worker_id, worker_num, file_list, repeat);
    create_checker();
    
    int batch_size = buffer->batch_size;
    int batch_size_start_idx = buffer->batch_size_start_idx;
    int batch_size_end_idx = buffer->batch_size_end_idx;
    int label_dim = buffer->label_dim;
    int dense_dim = buffer->dense_dim;
    
    CudaCPUDeviceContext ctx(gpu_resource->get_device_id()); // 得到了本worker对应哪个GPU
    std::shared_ptr<GeneralBuffer2<CudaHostAllocator>> buff =
    GeneralBuffer2<CudaHostAllocator>::create();
    
    buff->reserve({static_cast<size_t>(batch_size_end_idx - batch_size_start_idx),
    static_cast<size_t>(label_dim + dense_dim)},
    &host_dense_buffer_);
    buff->reserve({static_cast<size_t>(label_dim + dense_dim)}, &temp_host_dense_buffer_);
    
    for (auto& param : params) {
    host_sparse_buffer_.emplace_back(batch_size * param.slot_num,
    batch_size * param.max_feature_num);
    }
    
    buff->allocate();
    }

    具体拓展如下,其中每个thread里面含有一个worker:

    或者我们进一步简化几个内存类,得到如下,DataReaderWorker 操作 DataReader 之中的一个 ThreadBuffer,

    4.7 读取数据

    Reader构建时候,会建立一个 checker_,用来从文件读取数据。

    4.7.1 Checker

    void create_checker() {
    switch (check_type_) {
    case Check_t::Sum:
    checker_ = std::make_shared<CheckSum>(*source_);
    break;
    case Check_t::None:
    checker_ = std::make_shared<CheckNone>(*source_);
    break;
    default:
    assert(!"Error: no such Check_t && should never get here!!");
    }
    }

    以 CheckNone 为例,可以看到其就是读取文件。

    class CheckNone : public Checker {
    private:
    const int MAX_TRY{10};
    
    public:
    CheckNone(Source& src) : Checker(src) {}
    /**
    * Read "bytes_to_read" byte to the memory associated to ptr.
    * Users don't need to manualy maintain the check bit offset, just specify
    * number of bytes you really want to see in ptr.
    * @param ptr pointer to user located buffer
    * @param bytes_to_read bytes to read
    * @return `DataCheckError` `OutOfBound` `Success` `UnspecificError`
    */
    Error_t read(char* ptr, size_t bytes_to_read) noexcept {
    try {
    Checker::src_.read(ptr, bytes_to_read);
    return Error_t::Success;
    } catch (const std::runtime_error& rt_err) {
    std::cerr << rt_err.what() << std::endl;
    return Error_t::BrokenFile;
    }
    }
    
    /**
    * Start a new file to read.
    * @return `FileCannotOpen` or `UnspecificError`
    */
    Error_t next_source() {
    for (int i = MAX_TRY; i > 0; i--) {
    Error_t flag_eof = Checker::src_.next_source();
    if (flag_eof == Error_t::Success || flag_eof == Error_t::EndOfFile) {
    return flag_eof;
    }
    }
    CK_THROW_(Error_t::FileCannotOpen, "Checker::src_.next_source() == Error_t::Success failed");
    return Error_t::FileCannotOpen;  // to elimate compile error
    }
    };

    4.7.2 CSR 样例

    我们从 samples/ncf/preprocess-1m.py 之中找出一个代码来看看 csr 文件的格式。

    def write_hugeCTR_data(huge_ctr_data, filename='huge_ctr_data.dat'):
    with open(filename, 'wb') as f:
    #write header
    f.write(ll(0)) # 0: no error check; 1: check_num
    f.write(ll(huge_ctr_data.shape[0])) # the number of samples in this data file
    f.write(ll(1)) # dimension of label
    f.write(ll(1)) # dimension of dense feature
    f.write(ll(2)) # long long slot_num
    for _ in range(3): f.write(ll(0)) # reserved for future use
    
    for i in tqdm.tqdm(range(huge_ctr_data.shape[0])):
    f.write(c_float(huge_ctr_data[i,2])) # float label[label_dim];
    f.write(c_float(0)) # dummy dense feature
    f.write(c_int(1)) # slot 1 nnz: user ID
    f.write(c_uint(huge_ctr_data[i,0]))
    f.write(c_int(1)) # slot 2 nnz: item ID
    f.write(c_uint(huge_ctr_data[i,1]))

    4.7.3 读取批次数据

    read_a_batch 完成具体解析数据集工作。

    • 首先从文件读取数据。
    • 等待 ThreadBuffer(就是DataReader的thread_buffers_成员变量)的状态变成ReadyForWrite。
    • 解析成csr,放入到 host_dense_buffer_。
    • 调用 wait_until_h2d_ready 等待拷贝完成。
    • 其次调用cudaMemcpyAsync把数据从 host_dense_buffer_ 拷贝到 ThreadBuffer 之中。这里有两点很重要: 目前数据在 host_sparse_buffer_(CPU)之上,需要拷贝到 GPU(目标是 ThreadBuffer 的 device_sparse_buffers 成员变量)。
    • 而且,host_sparse_buffer_ 是 CSR 格式,ThreadBuffer 的 device_sparse_buffers 成员变量是SparseTensor格式,需要转换。
    • 这里是通过拷贝就进行了转换。

    有几点如下:

    • nnz 的意思是:non-zero feature number。
    • 每一个slot数据对应了一个CSR row。

    具体代码如下:

    /**
    * read a batch of data from data set to heap.
    */
    void read_a_batch() {
    // 得到各种配置
    long long current_batch_size = buffer_->batch_size;
    int label_dim = buffer_->label_dim;
    int dense_dim = buffer_->dense_dim;
    int label_dense_dim = label_dim + dense_dim;
    int batch_size_start_idx = buffer_->batch_size_start_idx;
    int batch_size_end_idx = buffer_->batch_size_end_idx;
    
    try {
    if (!checker_->is_open()) {
    read_new_file(); // 读一个新文件
    }
    } catch (const internal_runtime_error& rt_err) {
    Error_t err = rt_err.get_error();
    if (err == Error_t::EndOfFile) { // 文件读完了
    if (!wait_until_h2d_ready()) return;  // 等待 buffer_ 状态变为 ReadyForWrite
    buffer_->current_batch_size = 0;
    assert(buffer_->state.load() == BufferState::Writing); // 设置
    is_eof_ = true;
    buffer_->state.store(BufferState::ReadyForRead); // 设置状态为可读
    
    while (buffer_->state.load() != BufferState::ReadyForWrite) {
    usleep(2);
    if (*loop_flag_ == 0) return;  // in case main thread exit
    }
    return;  // need this return to run from begining
    } else {
    throw;
    }
    }
    
    // if the EOF is faced, the current batch size can be changed later
    
    for (auto& each_csr : host_sparse_buffer_) {
    each_csr.reset();
    }
    // batch loop
    for (int batch_idx = 0; batch_idx < buffer_->batch_size; ++batch_idx) {//读取batch中一个
    if (batch_idx >= current_batch_size) { // 如果已经读取batch之中的全部数据了
    for (size_t param_id = 0; param_id < params_.size(); ++param_id) { // 多个embedding
    // 如果是前面那个例子,这里遍历的就是user, good, cate
    auto& param = params_[param_id];
    // host_sparse_buffer_类型是std::vector<CSR<T>>
    auto& current_csr = host_sparse_buffer_[param_id];
    for (int k = 0; k < param.slot_num; k++) { // slot数目就是行数
    current_csr.new_row(); // 增加一行
    }
    }
    if (batch_idx >= batch_size_start_idx &&
    batch_idx < batch_size_end_idx) {  // only read local device dense data
    // 设置dense
    float* ptr =
    host_dense_buffer_.get_ptr() + (batch_idx - batch_size_start_idx) * label_dense_dim;
    
    for (int j = 0; j < label_dense_dim; j++) {
    ptr[j] = 0.f;
    }
    }
    continue;
    }
    try {
    try {
    if (batch_idx >= batch_size_start_idx &&
    batch_idx < batch_size_end_idx) {  // only read local device dense data
    // 读取dense参数
    CK_THROW_(checker_->read(reinterpret_cast<char*>(host_dense_buffer_.get_ptr() +
    (batch_idx - batch_size_start_idx) *
    label_dense_dim),
    sizeof(float) * label_dense_dim),
    "failure in reading label_dense");
    } else {
    // 读取dense参数
    CK_THROW_(checker_->read(reinterpret_cast<char*>(temp_host_dense_buffer_.get_ptr()),
    sizeof(float) * label_dense_dim),
    "failure in reading label_dense");
    }
    
    for (size_t param_id = 0; param_id < params_.size(); ++param_id) {
    auto& current_csr = host_sparse_buffer_[param_id];
    current_csr.set_check_point();
    }
    // 读取sparse参数
    for (size_t param_id = 0; param_id < params_.size(); ++param_id) {
    auto& param = params_[param_id];
    auto& current_csr = host_sparse_buffer_[param_id];
    for (int k = 0; k < param.slot_num; k++) {
    int nnz; // 读取一个int到nnz,就是得到nnz的大小,non-zero feature number
    CK_THROW_(checker_->read(reinterpret_cast<char*>(&nnz), sizeof(int)),
    "failure in reading nnz");
    current_csr.new_row(); // 换行
    size_t num_value = current_csr.get_num_values();
    // 读取nnz个数据
    CK_THROW_(checker_->read(reinterpret_cast<char*>(
    current_csr.get_value_tensor().get_ptr() + num_value),
    sizeof(T) * nnz),
    "failure in reading feature_ids_");
    current_csr.update_value_size(nnz);
    }
    }
    } catch (const internal_runtime_error& rt_err) { // 回退
    batch_idx--;  // restart i-th sample
    for (auto& each_csr : host_sparse_buffer_) {
    each_csr.roll_back();
    }
    Error_t err = rt_err.get_error();
    if (err == Error_t::DataCheckError) {
    ERROR_MESSAGE_("Error_t::DataCheckError");
    } else {            // Error_t::BrokenFile, Error_t::UnspecificEror, ...
    read_new_file();  // can throw Error_t::EOF
    }
    }
    
    current_record_index_++;
    
    // start a new file when finish one file read
    if (current_record_index_ >= data_set_header_.number_of_records) {
    read_new_file();  // can throw Error_t::EOF
    }
    } catch (const internal_runtime_error& rt_err) {
    Error_t err = rt_err.get_error();
    if (err == Error_t::EndOfFile) {
    current_batch_size = batch_idx + 1;
    } else {
    throw;
    }
    }
    }
    
    for (auto& each_csr : host_sparse_buffer_) {
    each_csr.new_row();
    }
    
    // do h2d
    // wait buffer and schedule
    // 目前数据在 host_sparse_buffer_(CPU)之上,需要拷贝到 GPU(目标是 ThreadBuffer 的 device_sparse_buffers 成员变量),使用 cudaMemcpyHostToDevice
    // 而且,host_sparse_buffer_ 是 CSR<T> 格式,ThreadBuffer 的 device_sparse_buffers 成员变量是SparseTensor<T>格式,需要转换
    if (!wait_until_h2d_ready()) return;
    buffer_->current_batch_size = current_batch_size;
    {
    CudaCPUDeviceContext context(gpu_resource_->get_device_id());
    // 目标是 ThreadBuffer 的 device_sparse_buffers 成员变量
    auto dst_dense_tensor = Tensor2<float>::stretch_from(buffer_->device_dense_buffers);
    CK_CUDA_THROW_(cudaMemcpyAsync(dst_dense_tensor.get_ptr(), host_dense_buffer_.get_ptr(),
    host_dense_buffer_.get_size_in_bytes(), cudaMemcpyHostToDevice,
    gpu_resource_->get_memcpy_stream()));
    
    for (size_t param_id = 0; param_id < params_.size(); ++param_id) { // 遍历嵌入层
    auto dst_sparse_tensor =
    SparseTensor<T>::stretch_from(buffer_->device_sparse_buffers[param_id]);
    if (buffer_->is_fixed_length[param_id] &&
    last_batch_nnz_[param_id] == host_sparse_buffer_[param_id].get_num_values()) {
    // 拷贝到GPU,同时也进行了转换,提取了CSR的成员变量,拷贝到了SparseTensor的对应地址
    CK_CUDA_THROW_(cudaMemcpyAsync(dst_sparse_tensor.get_value_ptr(),
    host_sparse_buffer_[param_id].get_value_tensor().get_ptr(),
    host_sparse_buffer_[param_id].get_num_values() * sizeof(T),
    cudaMemcpyHostToDevice,
    gpu_resource_->get_memcpy_stream()));
    } else {
    // 拷贝到GPU
    sparse_tensor_helper::cuda::copy_async(dst_sparse_tensor, host_sparse_buffer_[param_id],
    gpu_resource_->get_memcpy_stream());
    last_batch_nnz_[param_id] = host_sparse_buffer_[param_id].get_num_values();
    }
    }
    // 进行同步
    CK_CUDA_THROW_(cudaStreamSynchronize(gpu_resource_->get_memcpy_stream()));
    }
    assert(buffer_->state.load() == BufferState::Writing);
    buffer_->state.store(BufferState::ReadyForRead);
    }
    };
    4.7.3.1 等待

    这里wait_until_h2d_ready会等待。

    bool wait_until_h2d_ready() {
    BufferState expected = BufferState::ReadyForWrite;
    while (!buffer_->state.compare_exchange_weak(expected, BufferState::Writing)) {
    expected = BufferState::ReadyForWrite;
    usleep(2);
    if (*loop_flag_ == 0) return false;  // in case main thread exit
    }
    return true;
    }
    4.7.3.2 读取文件

    read_new_file 完成了对文件的读取。

    void read_new_file() {
    constexpr int MAX_TRY = 10;
    for (int i = 0; i < MAX_TRY; i++) {
    if (checker_->next_source() == Error_t::EndOfFile) {
    throw internal_runtime_error(Error_t::EndOfFile, "EndOfFile");
    }
    
    Error_t err =
    checker_->read(reinterpret_cast<char*>(&data_set_header_), sizeof(DataSetHeader));
    current_record_index_ = 0;
    if (!(data_set_header_.error_check == 0 && check_type_ == Check_t::None) &&
    !(data_set_header_.error_check == 1 && check_type_ == Check_t::Sum)) {
    ERROR_MESSAGE_("DataHeaderError");
    continue;
    }
    if (static_cast<size_t>(data_set_header_.slot_num) != total_slot_num_) {
    ERROR_MESSAGE_("DataHeaderError");
    continue;
    }
    if (err == Error_t::Success) {
    return;
    }
    }
    CK_THROW_(Error_t::BrokenFile, "failed to read a file");
    }

    4.7.4 小结

    我们总结逻辑如下,线程一直调用 data_reader_thread_func_ 来循环读取:

    另外一个逻辑视角是:

    1. 多线程调用 data_reader_thread_func_,其使用 read_a_batch 从数据文件之中读取数据解析为CSR。每一个embedding层 对应一个CSR。
    2. CSR 被放入 DataReaderWorker 的 host_sparse_buffer_。
    3. 随着batch不断读取,CSR 行数在不断增加,每一个slot对应了一行,所以一个batch的行数就是 batch_size * slot_num。
    4. 使用 cudaMemcpyAsync 把CSR从 host_sparse_buffer_ 拷贝到ThreadBuffer(位于GPU)。ThreadBuffer是 SparseTensor 类型了。
    5. 目前CSR数据就在 GPU 之上了

    这里简化了多GPU,多worker 的情况。

    0x05 读取到embedding

    我们接下来看看 DataCollector,就是流水线的第二级,就是这里的黄色框 "Copy to GPU"。其实其内部文字修改为:Copy To Embedding 更合适。

    5.1 DataCollector

    我们首先看看DataCollector的定义,这里省略了成员函数,主要成员变量是。

    • std::shared_ptr broadcast_buffer_ : CPU 数据拷贝到 GPU 之上,GPU 上就在这里。
    • std::shared_ptr output_buffer_ :这个就是 DataReaderOutput,就是 Reader 的成员变量,复制到这里是为了 collector 操作方便
    • BackgroundDataCollectorThread background_collector_ :线程主体,主要包括 ThreadBuffer 和 BroadcastBuffer,会把数据从 ThreadBuffer 拷贝到 BroadcastBuffer 之上
    • std::thread background_collector_thread_ :工作线程。
    /**
    * @brief A helper class of data reader.
    *
    * This class implement asynchronized data collecting from heap
    * to output of data reader, thus data collection and training
    * can work in a pipeline.
    */
    template <typename T>
    class DataCollector {
    
    class BackgroundDataCollectorThread {
    std::vector<std::shared_ptr<ThreadBuffer>> thread_buffers_;
    std::shared_ptr<BroadcastBuffer> broadcast_buffer_;
    
    std::atomic<bool> loop_flag_;
    int counter_;
    std::vector<size_t> last_batch_nnz_;  // local_gpu_count * embedding number
    std::vector<char> worker_status_;
    int eof_worker_num_;
    
    std::shared_ptr<ResourceManager> resource_manager_;
    }
    
    std::shared_ptr<BroadcastBuffer> broadcast_buffer_;
    std::shared_ptr<DataReaderOutput> output_buffer_;
    
    BackgroundDataCollectorThread background_collector_;
    std::thread background_collector_thread_;
    
    std::atomic<bool> loop_flag_;
    std::vector<size_t> last_batch_nnz_;
    
    std::shared_ptr<ResourceManager> resource_manager_;
    };

    目前具体如下,Collector 之中的 broadcast_buffer_ 和 output_buffer_ 都指向了GPU,但GPU之中尚且没有数据:

    5.2 ThreadBuffer 2 BroadBuffer

    5.2.1 工作线程

    BackgroundDataCollectorThread 的作用是把数据从 DataReader 的

    thread_buffers_
    拷贝到
    broadcast_buffer_

    class BackgroundDataCollectorThread {
    std::vector<std::shared_ptr<ThreadBuffer>> thread_buffers_;
    std::shared_ptr<BroadcastBuffer> broadcast_buffer_;
    
    std::atomic<bool> loop_flag_;
    int counter_;
    std::vector<size_t> last_batch_nnz_;  // local_gpu_count * embedding number
    std::vector<char> worker_status_;
    int eof_worker_num_;
    
    std::shared_ptr<ResourceManager> resource_manager_;
    
    public:
    BackgroundDataCollectorThread(const std::vector<std::shared_ptr<ThreadBuffer>> &thread_buffers,
    const std::shared_ptr<BroadcastBuffer> &broadcast_buffer,
    const std::shared_ptr<ResourceManager> &resource_manager)
    : thread_buffers_(thread_buffers),
    broadcast_buffer_(broadcast_buffer),
    loop_flag_{true},
    counter_{0},
    last_batch_nnz_(
    broadcast_buffer->is_fixed_length.size() * resource_manager->get_local_gpu_count(),
    0),
    worker_status_(thread_buffers.size(), 0),
    eof_worker_num_(0),
    resource_manager_(resource_manager) {}
    
    void start() {
    
    while (loop_flag_.load()) {
    // threadbuffer是源数据,broadcast buffer是目标数据
    auto &current_src_buffer = thread_buffers_[counter_];
    auto &dst_buffer = broadcast_buffer_;
    auto src_expected = BufferState::ReadyForRead; // 期望源数据是这个状态
    auto dst_expected = BufferState::ReadyForWrite; // 期望目标数据是这个状态
    
    if (worker_status_[counter_]) {
    counter_ = (counter_ + 1) % thread_buffers_.size();
    continue;
    }
    
    if ((current_src_buffer->state.load() == BufferState::Reading ||
    current_src_buffer->state.compare_exchange_weak(src_expected, BufferState::Reading)) &&
    (dst_buffer->state.load() == BufferState::Writing ||
    dst_buffer->state.compare_exchange_weak(dst_expected, BufferState::Writing))) {
    
    // 如果源数据是可读或者正在读,并且,目标数据是可写或者正在写,则可以操作
    
    if (current_src_buffer->current_batch_size == 0) {
    worker_status_[counter_] = 1;
    eof_worker_num_ += 1;
    current_src_buffer->state.store(BufferState::FileEOF);
    }
    if (static_cast<size_t>(eof_worker_num_) != thread_buffers_.size() &&
    current_src_buffer->current_batch_size == 0) {
    counter_ = (counter_ + 1) % thread_buffers_.size();
    dst_buffer->state.store(BufferState::ReadyForWrite); // 设定目标数据的状态
    continue;
    }
    dst_buffer->current_batch_size = current_src_buffer->current_batch_size;
    if (current_src_buffer->current_batch_size != 0) {
    // 进行广播操作
    broadcast<T>(current_src_buffer, dst_buffer, last_batch_nnz_, resource_manager_);
    
    current_src_buffer->state.store(BufferState::ReadyForWrite); // 设定目标数据的状态
    counter_ = (counter_ + 1) % thread_buffers_.size();
    } else {
    memset(worker_status_.data(), 0, sizeof(char) * worker_status_.size());
    eof_worker_num_ = 0;
    counter_ = 0;
    }
    
    dst_buffer->state.store(BufferState::ReadyForRead); // 会通知源数据可以继续读取了
    } else {
    usleep(2); // 否则等待一会
    }
    }
    }
    
    void stop() { loop_flag_.store(false); }
    };

    5.2.2 拷贝操作

    这里就是从源数据拷贝到目标数据,并且是逐个参数进行拷贝。这个是设备之内的拷贝。

    template <typename T>
    void broadcast(const std::shared_ptr<ThreadBuffer>& thread_buffer,
    std::shared_ptr<BroadcastBuffer>& broadcast_buffer,
    std::vector<size_t>& last_batch_nnz_,
    const std::shared_ptr<ResourceManager>& resource_manager) {
    int param_num = thread_buffer->param_num;
    int dense_dim = thread_buffer->dense_dim;
    int label_dim = thread_buffer->label_dim;
    int batch_size = thread_buffer->batch_size;
    int batch_size_per_gpu = batch_size / resource_manager->get_global_gpu_count();
    int local_gpu_count = resource_manager->get_local_gpu_count();
    
    #pragma omp parallel for num_threads(local_gpu_count)
    for (int i = 0; i < local_gpu_count; ++i) { // 遍历本地的GPU
    
    auto local_gpu = resource_manager->get_local_gpu(i);
    CudaDeviceContext ctx(local_gpu->get_device_id());
    
    for (int param_id = 0; param_id < param_num; ++param_id) { // 遍历嵌入层
    // 从 thread_buffer 拷贝到 broadcast_buffer
    auto src_sparse_tensor =
    SparseTensor<T>::stretch_from(thread_buffer->device_sparse_buffers[param_id]);
    auto dst_sparse_tensor =
    SparseTensor<T>::stretch_from(broadcast_buffer->sparse_buffers[i * param_num + param_id]);
    
    // 拷贝sparse参数
    if (thread_buffer->is_fixed_length[param_id] &&
    last_batch_nnz_[i * param_num + param_id] == src_sparse_tensor.nnz()) {
    CK_CUDA_THROW_(cudaMemcpyAsync(dst_sparse_tensor.get_value_ptr(),
    src_sparse_tensor.get_value_ptr(),
    src_sparse_tensor.nnz() * sizeof(T),
    cudaMemcpyDeviceToDevice, local_gpu->get_p2p_stream()));
    } else {
    sparse_tensor_helper::cuda::copy_async(dst_sparse_tensor, src_sparse_tensor,
    cudaMemcpyDeviceToDevice,
    local_gpu->get_p2p_stream());
    last_batch_nnz_[i * param_num + param_id] = src_sparse_tensor.nnz();
    }
    }
    
    // 拷贝dense参数
    auto dst_dense_tensor = Tensor2<float>::stretch_from(broadcast_buffer->dense_tensors[i]);
    auto src_dense_tensor = Tensor2<float>::stretch_from(thread_buffer->device_dense_buffers);
    CK_CUDA_THROW_(cudaMemcpyAsync(
    dst_dense_tensor.get_ptr(),
    src_dense_tensor.get_ptr() + i * batch_size_per_gpu * (label_dim + dense_dim),
    batch_size_per_gpu * (label_dim + dense_dim) * sizeof(float), cudaMemcpyDeviceToDevice,
    local_gpu->get_p2p_stream()));
    
    // 同步
    CK_CUDA_THROW_(cudaStreamSynchronize(local_gpu->get_p2p_stream()));
    }
    }

    逻辑如下,多了一步从 ThreadBuffer 到 BroadcastBuffer 的操作。

    5.3 读取到output

    目前的流程是:DataFile ---> Host buffer ----> ThreadBuffer ----> BroadcastBuffer。

    现在数据已经拷贝到了 GPU 之上的 BroadcastBuffer,我们需要看看最后训练时候怎么拿到数据。

    5.3.1 Train

    我们首先回到 train 函数,其调用了 read_a_batch_to_device_delay_release 来从 BroadcastBuffer 拷贝数据。

    bool Session::train() {
    try {
    // 确保 train_data_reader_ 已经启动
    if (train_data_reader_->is_started() == false) {
    CK_THROW_(Error_t::IllegalCall,
    "Start the data reader first before calling Session::train()");
    }
    
    #ifndef DATA_READING_TEST
    // 需要 reader 先读取一个 batchsize 的数据。
    long long current_batchsize = train_data_reader_->read_a_batch_to_device_delay_release(); // 读取数据
    if (!current_batchsize) {
    return false; // 读不到就退出,没有数据了
    }
    #pragma omp parallel num_threads(networks_.size()) //其后语句将被networks_.size()个线程并行执行
    {
    
    size_t id = omp_get_thread_num();
    CudaCPUDeviceContext ctx(resource_manager_->get_local_gpu(id)->get_device_id());
    cudaStreamSynchronize(resource_manager_->get_local_gpu(id)->get_stream());
    }
    // reader 可以开始解析数据
    train_data_reader_->ready_to_collect();
    #ifdef ENABLE_PROFILING
    global_profiler.iter_check();
    #endif
    
    // If true we're gonna use overlaping, if false we use default
    if (solver_config_.use_overlapped_pipeline) {
    train_overlapped();
    } else {
    for (const auto& one_embedding : embeddings_) {
    one_embedding->forward(true); // 嵌入层进行前向传播,即从参数服务器读取embedding,进行处理
    }
    
    // Network forward / backward
    if (networks_.size() > 1) {
    // 单机多卡或多机多卡
    // execute dense forward and backward with multi-cpu threads
    #pragma omp parallel num_threads(networks_.size())
    {
    // dense网络的前向反向
    size_t id = omp_get_thread_num();
    long long current_batchsize_per_device =
    train_data_reader_->get_current_batchsize_per_device(id);
    networks_[id]->train(current_batchsize_per_device); // 前向操作
    const auto& local_gpu = resource_manager_->get_local_gpu(id);
    local_gpu->set_compute_event_sync(local_gpu->get_stream());
    local_gpu->wait_on_compute_event(local_gpu->get_comp_overlap_stream());
    }
    } else if (resource_manager_->get_global_gpu_count() > 1) {
    // 多机单卡
    long long current_batchsize_per_device =
    train_data_reader_->get_current_batchsize_per_device(0);
    networks_[0]->train(current_batchsize_per_device); // 前向操作
    const auto& local_gpu = resource_manager_->get_local_gpu(0);
    local_gpu->set_compute_event_sync(local_gpu->get_stream());
    local_gpu->wait_on_compute_event(local_gpu->get_comp_overlap_stream());
    } else {
    // 单机单卡
    long long current_batchsize_per_device =
    train_data_reader_->get_current_batchsize_per_device(0);
    networks_[0]->train(current_batchsize_per_device); // 前向操作
    const auto& local_gpu = resource_manager_->get_local_gpu(0);
    local_gpu->set_compute_event_sync(local_gpu->get_stream());
    local_gpu->wait_on_compute_event(local_gpu->get_comp_overlap_stream());
    networks_[0]->update_params();
    }
    
    // Embedding backward
    for (const auto& one_embedding : embeddings_) {
    one_embedding->backward(); // 嵌入层反向操作
    }
    
    // Exchange wgrad and update params
    if (networks_.size() > 1) {
    #pragma omp parallel num_threads(networks_.size())
    {
    size_t id = omp_get_thread_num();
    exchange_wgrad(id); // 多卡之间交换dense参数的梯度
    networks_[id]->update_params();
    }
    } else if (resource_manager_->get_global_gpu_count() > 1) {
    exchange_wgrad(0);
    networks_[0]->update_params();
    }
    for (const auto& one_embedding : embeddings_) {
    one_embedding->update_params(); // 嵌入层更新sparse参数
    }
    
    // Join streams
    if (networks_.size() > 1) {
    #pragma omp parallel num_threads(networks_.size())
    {
    size_t id = omp_get_thread_num();
    const auto& local_gpu = resource_manager_->get_local_gpu(id);
    local_gpu->set_compute2_event_sync(local_gpu->get_comp_overlap_stream());
    local_gpu->wait_on_compute2_event(local_gpu->get_stream());
    }
    }
    else {
    const auto& local_gpu = resource_manager_->get_local_gpu(0);
    local_gpu->set_compute2_event_sync(local_gpu->get_comp_overlap_stream());
    local_gpu->wait_on_compute2_event(local_gpu->get_stream());
    }
    return true;
    }
    #else
    data_reader_->read_a_batch_to_device();
    #endif
    
    } catch (const internal_runtime_error& err) {
    std::cerr << err.what() << std::endl;
    throw err;
    } catch (const std::exception& err) {
    std::cerr << err.what() << std::endl;
    throw err;
    }
    return true;
    }

    5.3.2 read_a_batch_to_device_delay_release

    read_a_batch_to_device_delay_release 是最终配置好embedding数据的地方。

    long long read_a_batch_to_device_delay_release() override {
    current_batchsize_ = data_collector_->read_a_batch_to_device();
    return current_batchsize_;
    }

    我们看看 read_a_batch_to_device。这里 read_a_batch_to_device_delay_release 和 read_a_batch_to_device 是沿用旧版本命名,已经和目前状况不符合。

    具体逻辑是:看看 broadcast_buffer_ 的状态是不是可以读取 ReadyForRead,如果不可以,就等一会。如果可以,就继续,即遍历GPU,逐个从broadcast拷贝到output(也是设备之间的拷贝),也对 label 和 dense 进行split。

    long long read_a_batch_to_device() {
    
    BufferState expected = BufferState::ReadyForRead;
    while (!broadcast_buffer_->state.compare_exchange_weak(expected, BufferState::Reading)) {
    expected = BufferState::ReadyForRead;
    usleep(2);
    }
    long long current_batch_size = broadcast_buffer_->current_batch_size;
    if (current_batch_size != 0) {
    int local_gpu_count = resource_manager_->get_local_gpu_count();
    
    #pragma omp parallel for num_threads(local_gpu_count)
    for (int i = 0; i < local_gpu_count; ++i) {
    auto local_gpu = resource_manager_->get_local_gpu(i);
    CudaDeviceContext ctx(local_gpu->get_device_id());
    
    // wait until last iteration finish
    auto label_tensor = Tensor2<float>::stretch_from(output_buffer_->label_tensors[i]);
    auto label_dense_tensor = Tensor2<float>::stretch_from(broadcast_buffer_->dense_tensors[i]);
    
    // 遍历 sparse 参数
    for (size_t param_id = 0; param_id < output_buffer_->sparse_name_vec.size(); ++param_id) {
    const auto &top_name = output_buffer_->sparse_name_vec[param_id];
    int idx_broadcast = i * broadcast_buffer_->param_num + param_id;
    // broadcast 的是源
    auto src_sparse_tensor =
    SparseTensor<T>::stretch_from(broadcast_buffer_->sparse_buffers[idx_broadcast]);
    if (output_buffer_->sparse_tensors_map.find(top_name) ==
    output_buffer_->sparse_tensors_map.end()) {
    CK_THROW_(Error_t::IllegalCall, "can not find sparse name");
    }
    // output是目标
    auto dst_sparse_tensor =
    SparseTensor<T>::stretch_from(output_buffer_->sparse_tensors_map[top_name][i]);
    
    // 从broadcast拷贝到output
    if (broadcast_buffer_->is_fixed_length[idx_broadcast] &&
    last_batch_nnz_[idx_broadcast] == src_sparse_tensor.nnz()) {
    CK_CUDA_THROW_(cudaMemcpyAsync(dst_sparse_tensor.get_value_ptr(),
    src_sparse_tensor.get_value_ptr(),
    src_sparse_tensor.nnz() * sizeof(T),
    cudaMemcpyDeviceToDevice, local_gpu->get_stream()));
    } else {
    // 从broadcast拷贝到output
    sparse_tensor_helper::cuda::copy_async(dst_sparse_tensor, src_sparse_tensor,
    cudaMemcpyDeviceToDevice,
    local_gpu->get_stream());
    last_batch_nnz_[idx_broadcast] = src_sparse_tensor.nnz();
    }
    }
    const int label_dense_dim = output_buffer_->label_dense_dim;
    
    // 拷贝label和dense
    if (output_buffer_->use_mixed_precision) {
    auto dense_tensor = Tensor2<__half>::stretch_from(output_buffer_->dense_tensors[i]);
    // 进行分块
    split(label_tensor, dense_tensor, label_dense_tensor, label_dense_dim,
    local_gpu->get_stream());
    } else {
    auto dense_tensor = Tensor2<float>::stretch_from(output_buffer_->dense_tensors[i]);
    split(label_tensor, dense_tensor, label_dense_tensor, label_dense_dim,
    local_gpu->get_stream());
    }
    }
    } else {
    broadcast_buffer_->state.store(BufferState::ReadyForWrite);
    }
    return current_batch_size;
    }

    5.3.3 split

    label 和 dense 早已经拷贝到了GPU之上,这步做的是分成block,然后使用 GPU thread 进行操作。

    template <typename TypeComp>
    __global__ void split_kernel__(int batchsize, float* label_ptr, int label_dim, TypeComp* dense_ptr,
    int dense_dim, const float* label_dense, int label_dense_dim) {
    int idx = blockDim.x * blockIdx.x + threadIdx.x;
    if (idx < batchsize * label_dense_dim) {
    const int in_col = idx % label_dense_dim;
    const int in_row = idx / label_dense_dim;
    const int out_row = in_row;
    if (in_col < label_dim) {
    const int out_col = in_col;
    label_ptr[out_row * label_dim + out_col] = label_dense[idx];
    } else {
    const int out_col = in_col - label_dim;
    dense_ptr[out_row * dense_dim + out_col] = label_dense[idx];
    }
    }
    return;
    }
    
    template <typename TypeComp>
    void split(Tensor2<float>& label_tensor, Tensor2<TypeComp>& dense_tensor,
    const Tensor2<float>& label_dense_buffer, const int label_dense_dim,
    cudaStream_t stream) {
    // check the input size
    assert(label_tensor.get_dimensions()[0] == dense_tensor.get_dimensions()[0]);
    assert(label_tensor.get_num_elements() + dense_tensor.get_num_elements() ==
    label_dense_buffer.get_num_elements());
    
    const int batchsize = label_tensor.get_dimensions()[0];
    const int label_dim = label_tensor.get_dimensions()[1];
    const int dense_dim = dense_tensor.get_dimensions()[1];
    const int BLOCK_DIM = 256;
    const int GRID_DIM = (label_dense_buffer.get_num_elements() - 1) / BLOCK_DIM + 1;
    
    if (dense_dim > 0) {
    split_kernel__<<<GRID_DIM, BLOCK_DIM, 0, stream>>>(
    batchsize, label_tensor.get_ptr(), label_dim, dense_tensor.get_ptr(), dense_dim,
    label_dense_buffer.get_ptr(), label_dense_dim);
    } else if (dense_dim == 0) {
    split_kernel__<<<GRID_DIM, BLOCK_DIM, 0, stream>>>(
    batchsize, label_tensor.get_ptr(), label_dim, (TypeComp*)0, 0, label_dense_buffer.get_ptr(),
    label_dense_dim);
    
    } else {
    CK_THROW_(Error_t::WrongInput, "dense_dim < 0");
    }
    
    return;
    }

    这样后续就可以训练了,后续是通过 finalize_batch 之中进行读取。

    void finalize_batch() {
    for (size_t i = 0; i < resource_manager_->get_local_gpu_count(); i++) {
    const auto &local_gpu = resource_manager_->get_local_gpu(i);
    CudaDeviceContext context(local_gpu->get_device_id());
    CK_CUDA_THROW_(cudaStreamSynchronize(local_gpu->get_stream()));
    }
    
    broadcast_buffer_->state.store(BufferState::ReadyForWrite);
    }
    
    template <typename SparseType>
    void AsyncReader<SparseType>::ready_to_collect() {
    auto raw_device_id = reader_impl_->get_last_batch_device();
    auto local_gpu = resource_manager_->get_local_gpu(raw_device_id);
    CudaDeviceContext ctx(local_gpu->get_device_id());
    CK_CUDA_THROW_(cudaEventRecord(completion_events_[raw_device_id], local_gpu->get_stream()));
    
    reader_impl_->finalize_batch(&completion_events_[raw_device_id]);
    }

    0x06 总结

    具体逻辑如下,本章节之中,各个buffer之间拷贝,是依据其状态是 ReadyForRead 和 ReadyForWrite 来完成的。最终sparse 参数的embedding是在DataReaderOutput,即后续 GPU 上的计算是从output开始的。

    0xFF 参考

    https://developer.nvidia.com/blog/introducing-merlin-hugectr-training-framework-dedicated-to-recommender-systems/

    https://developer.nvidia.com/blog/announcing-nvidia-merlin-application-framework-for-deep-recommender-systems/

    https://developer.nvidia.com/blog/accelerating-recommender-systems-training-with-nvidia-merlin-open-beta/

    HugeCTR源码阅读

    embedding层如何反向传播

    https://web.eecs.umich.edu/~justincj/teaching/eecs442/notes/linear-backprop.html

    稀疏矩阵存储格式总结+存储效率对比:COO,CSR,DIA,ELL,HYB

  • 内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
    标签: