您的位置:首页 > 移动开发 > Android开发

Android内核解读-Android系统的开机启动过程

2019-02-10 13:17 162 查看
               

转载请注明出处:https://www.geek-share.com/detail/2603573420.html

前言

当长按手机的power键,Android手机就会开机,那么Android系统的开机启动过程到底是怎么样的呢,本文将要介绍这一过程。简单来说,Android系统的开机启动过程大致是这样的:首先linux系统会启动一个叫做zygote(可以称为受精卵、母体)的linux程序,这个程序实际上就是android系统的内核,zygote启动的时候会建立socket服务端并加载大量的类和资源。接着zygote会孵化第一个dalvik进程SystemServer,在SystemServer中会创建一个socket客户端,后续AMS(ActivityManagerService)会通过此客户端和zygote通信,zygote再根据请求孵化出新的dalvik进程即启动一个新的apk同时把新进程的socket连接关闭。SystemServer初始化完毕后会启动一个位于桟顶的activity,由于系统刚开机,所以task桟顶没有activity,于是接着它会发送一个隐式的intent(category:CATEGORY_HOME),也就是launcher了,即Android系统的桌面程序,launcher启动以后,我们就可以通过桌面启动各种应用了,可以发现,launcher可以有多个,第三方应用只要加入launcher所需要的intent-filter即可。下面一一分析各个流程。(注:本文分析基于Android4.3源码)

zygote的启动过程

zygote是一个linux程序,其对应的可执行文件位于/system/bin/app_process,它在/init.rc中定义,如下

service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start-system-server
    class main
    socket zygote stream 660 root system
    onrestart write /sys/android_power/request_state wake
    onrestart write /sys/power/state on
    onrestart restart media
    onrestart restart netd

可以发现,zygote创建了一个流式套接字(即采用TCP协议),并监听660端口,并且当zygote重启的时候需要对唤醒电源并重启Media、netd服务。下面看zygote的源码,其路径为frameworks\base\cmds\app_process\app_main.cpp中:

int main(int argc, char* const argv[]){#ifdef __arm__    /*     * b/7188322 - Temporarily revert to the compat memory layout     * to avoid breaking third party apps.     *     * THIS WILL GO AWAY IN A FUTURE ANDROID RELEASE.     *     * http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commitdiff;h=7dbaa466     * changes the kernel mapping from bottom up to top-down.     * This breaks some programs which improperly embed     * an out of date copy of Android's linker.     */    char value[PROPERTY_VALUE_MAX];    property_get("ro.kernel.qemu", value, "");    bool is_qemu = (strcmp(value, "1") == 0);    if ((getenv("NO_ADDR_COMPAT_LAYOUT_FIXUP") == NULL) && !is_qemu) {        int current = personality(0xFFFFFFFF);        if ((current & ADDR_COMPAT_LAYOUT) == 0) {            personality(current | ADDR_COMPAT_LAYOUT);            setenv("NO_ADDR_COMPAT_LAYOUT_FIXUP", "1", 1);            execv("/system/bin/app_process", argv);            return -1;        }    }    unsetenv("NO_ADDR_COMPAT_LAYOUT_FIXUP");#endif    // These are global variables in ProcessState.cpp    mArgC = argc;    mArgV = argv;    mArgLen = 0;    for (int i=0; i<argc; i++) {        mArgLen += strlen(argv[i]) + 1;    }    mArgLen--; //注意,这里持有了一个AppRuntime对象,其继承自AndroidRuntime    AppRuntime runtime;    const char* argv0 = argv[0];    // Process command line arguments    // ignore argv[0]    argc--;    argv++;    // Everything up to '--' or first non '-' arg goes to the vm    int i = runtime.addVmArguments(argc, argv);    // Parse runtime arguments.  Stop at first unrecognized option.    bool zygote = false;    bool startSystemServer = false;    bool application = false;    const char* parentDir = NULL;    const char* niceName = NULL;    const char* className = NULL; //这里是解析init.rc中定义的zygote的启动参数    while (i < argc) {        const char* arg = argv[i++];        if (!parentDir) {            parentDir = arg;        } else if (strcmp(arg, "--zygote") == 0) {            zygote = true;            niceName = "zygote";        } else if (strcmp(arg, "--start-system-server") == 0) {            startSystemServer = true;        } else if (strcmp(arg, "--application") == 0) {            application = true;        } else if (strncmp(arg, "--nice-name=", 12) == 0) {            niceName = arg + 12;        } else {            className = arg;            break;        }    }    if (niceName && *niceName) {        setArgv0(argv0, niceName);        set_process_name(niceName);    }    runtime.mParentDir = parentDir;    if (zygote) {  //从init.rc中的定义可以看出,zygote为true,startSystemServer也为true  //最终这里会调用ZygoteInit的main方法        runtime.start("com.android.internal.os.ZygoteInit",                startSystemServer ? "start-system-server" : "");    } else if (className) {        // Remainder of args get passed to startup class main()        runtime.mClassName = className;        runtime.mArgC = argc - i;        runtime.mArgV = argv + i;        runtime.start("com.android.internal.os.RuntimeInit",                application ? "application" : "tool");    } else {        fprintf(stderr, "Error: no class name or --zygote supplied.\n");        app_usage();        LOG_ALWAYS_FATAL("app_process: no class name or --zygote supplied.");        return 10;    }}
说明:这句代码runtime.start("com.android.internal.os.ZygoteInit", startSystemServer ? "start-system-server" : "")在AndroidRuntime中实现,其最终会调用ZygoteInit的main方法,请看env->CallStaticVoidMethod(startClass, startMeth, strArray);这里的startClass就是com.android.internal.os.ZygoteInit,而startMeth就是main,所以,我们直接看ZygoteInit的main方法,代码路径为:frameworks\base\core\java\com\android\internal\os\ZygoteInit.java:
public static void main(String argv[]) { try {  // Start profiling the zygote initialization.  SamplingProfilerIntegration.start();  //这里注册流式socket,以便于fork新的dalvik进程  registerZygoteSocket();  EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_START,   SystemClock.uptimeMillis());  //这里预先加载一些类和资源  preload();  EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_END,   SystemClock.uptimeMillis());  // Finish profiling the zygote initialization.  SamplingProfilerIntegration.writeZygoteSnapshot();  // Do an initial gc to clean up after startup  gc();  // Disable tracing so that forked processes do not inherit stale tracing tags from  // Zygote.  Trace.setTracingEnabled(false);  // If requested, start system server directly from Zygote  if (argv.length != 2) {   throw new RuntimeException(argv[0] + USAGE_STRING);  }  if (argv[1].equals("start-system-server")) {   //启动SystemServer,zygote通过SystemServer和上层服务进行交互   startSystemServer();  } else if (!argv[1].equals("")) {   throw new RuntimeException(argv[0] + USAGE_STRING);  }  Log.i(TAG, "Accepting command socket connections");  //通过Select方式监听端口,即异步读取消息,死循环,没有消息则一直阻塞在那里  runSelectLoop();  closeServerSocket(); } catch (MethodAndArgsCaller caller) {  caller.run(); } catch (RuntimeException ex) {  Log.e(TAG, "Zygote died with exception", ex);  closeServerSocket();  throw ex; }}
下面看一下runSelectLoop方法,看看它是如何fork产生一个新的进程的:
/** * Runs the zygote process's select loop. Accepts new connections as * they happen, and reads commands from connections one spawn-request's * worth at a time. * * @throws MethodAndArgsCaller in a child process when a main() should * be executed. */private static void runSelectLoop() throws MethodAndArgsCaller { ArrayList<FileDescriptor> fds = new ArrayList<FileDescriptor>(); ArrayList<ZygoteConnection> peers = new ArrayList<ZygoteConnection>(); FileDescriptor[] fdArray = new FileDescriptor[4]; fds.add(sServerSocket.getFileDescriptor()); peers.add(null); int loopCount = GC_LOOP_COUNT; //死循环,没有消息则一直阻塞在这里 while (true) {  int index;  /*   * Call gc() before we block in select().   * It's work that has to be done anyway, and it's better   * to avoid making every child do it.  It will also   * madvise() any free memory as a side-effect.   *   * Don't call it every time, because walking the entire   * heap is a lot of overhead to free a few hundred bytes.   */  if (loopCount <= 0) {   gc();   loopCount = GC_LOOP_COUNT;  } else {   loopCount--;  }  try {   fdArray = fds.toArray(fdArray);   //通过select()函数来读取新的socket消息,其返回值有<0、0、>0三种   //分别代表:发生异常、继续读取新消息、首先处理当前消息   index = selectReadable(fdArray);  } catch (IOException ex) {   throw new RuntimeException("Error in select()", ex);  }  if (index < 0) {   throw new RuntimeException("Error in select()");  } else if (index == 0) {   //构造一个ZygoteConnection对象,并将其加入到peers列表中   ZygoteConnection newPeer = acceptCommandPeer();   peers.add(newPeer);   fds.add(newPeer.getFileDesciptor());  } else {   boolean done;   //这里处理当前socket消息,ZygoteConnection的runOnce会被调用,一个新的dalvik进程会被创建   done = peers.get(index).runOnce();   if (done) {    //处理完了以后删除此socket消息    peers.remove(index);    fds.remove(index);   }  } }}
接着,我们还需要看下ZygoteConnection的runOnce方法,看看一个dalvik进程到底是如何产生的,我们知道每个apk都运行在一个独立的dalvik进程中,所以当启动一个apk的时候,zygote会孵化出一个新的进程,在这个进程中运行此apk。  在ZygoteConnection中,新进程是通过Zygote的静态方法forkAndSpecialize来产生的:

pid = Zygote.forkAndSpecialize(parsedArgs.uid, parsedArgs.gid, parsedArgs.gids,
    parsedArgs.debugFlags, rlimits, parsedArgs.mountExternal, parsedArgs.seInfo, parsedArgs.niceName);

具体的我们就不用多看了,内部肯定是通过linux系统的fork()函数来产生一个新进程的。当一个新的dalvik进程产生了以后,还需要做一些清场的工作,由于新进程是由zygote程序fork出来的,所以子进程具有zygote的一份拷贝,我们知道,zygote启动的时候创建了一个socket服务端,这个服务端只能有一个,由zygote孵化的子进程是不应该有的,所以子进程孵化出来以后,还必须关闭拷贝的socket服务端,这些操作在handleChildProc方法中完成:

private void handleChildProc(Arguments parsedArgs,  FileDescriptor[] descriptors, FileDescriptor pipeFd, PrintStream newStderr)  throws ZygoteInit.MethodAndArgsCaller { //关闭本地和服务端(如果有)的socket closeSocket(); ZygoteInit.closeServerSocket(); if (descriptors != null) {  try {   ZygoteInit.reopenStdio(descriptors[0],     descriptors[1], descriptors[2]);   for (FileDescriptor fd: descriptors) {    IoUtils.closeQuietly(fd);   }   newStderr = System.err;  } catch (IOException ex) {   Log.e(TAG, "Error reopening stdio", ex);  } } if (parsedArgs.niceName != null) {  Process.setArgV0(parsedArgs.niceName); } if (parsedArgs.runtimeInit) {  if (parsedArgs.invokeWith != null) {   WrapperInit.execApplication(parsedArgs.invokeWith,     parsedArgs.niceName, parsedArgs.targetSdkVersion,     pipeFd, parsedArgs.remainingArgs);  } else {   RuntimeInit.zygoteInit(parsedArgs.targetSdkVersion,     parsedArgs.remainingArgs);  } } else {  String className;  try {   className = parsedArgs.remainingArgs[0];  } catch (ArrayIndexOutOfBoundsException ex) {   logAndPrintError(newStderr,     "Missing required class name argument", null);   return;  }  String[] mainArgs = new String[parsedArgs.remainingArgs.length - 1];  System.arraycopy(parsedArgs.remainingArgs, 1,    mainArgs, 0, mainArgs.length);  if (parsedArgs.invokeWith != null) {   WrapperInit.execStandalone(parsedArgs.invokeWith,     parsedArgs.classpath, className, mainArgs);  } else {   ClassLoader cloader;   if (parsedArgs.classpath != null) {    cloader = new PathClassLoader(parsedArgs.classpath,      ClassLoader.getSystemClassLoader());   } else {    cloader = ClassLoader.getSystemClassLoader();   }   try {    //这里子进程的main方法被调用,此时,子进程完全从zygote(母体)上脱离出来了    ZygoteInit.invokeStaticMain(cloader, className, mainArgs);   } catch (RuntimeException ex) {    logAndPrintError(newStderr, "Error starting.", ex);   }  } }}
同时在ZygoteInit中会预先加载一些类和资源,具体代码在preload方法中:

    static void preload() {
        preloadClasses();
        preloadResources();
    }

SystemServer的创建

SystemServer作为zygote孵化的第一个dalvik进程,其孵化过程在上面已经进行了描述,但是其和普通进程的启动略有不同,普通进程由Zygote.forkAndSpecialize来启动,而SystemServer由Zygote.forkSystemServer来启动,其次是SystemServer内部多创建了一个socket客户端。关于SystemServer内部的本地socket客户端,本文前面已经说过,外围的Service都是通过SystemServer和zygote交互的,比如要启动一个apk,首先AMS会发起一个新进程的创建请求,在startProcessLocked方法中会调用Process的start方法,其内部会调用startViaZygote方法,而在startViaZygote内部会创建一个本地socket和zygote通信,我们要知道,AMS是在SystemServer进程中创建的,所以说在SystemServer中创建一个本地socket和zygote通信是有道理的。SystemServer的一个很重要的作用是创建各种服务,包括大家常见的WindowManagerService 、AlarmManagerService、ActivityManagerService等,然后上层的各种manager通过binder和service进行交互,关于SystemServer创建各种服务的过程以及和binder的交互,请参考我之前写的一篇博客的其中一节,这里就不重复了:各种Manager和Binder服务的对应关系

系统桌面的启动

 当SystemServer创建各种服务完毕后,其中的一个服务ActivityManagerService由于也创建完成,所以其事件回调方法systemReady会被调用,这个方法很长,注意到在这个方法的倒数第二句是mMainStack.resumeTopActivityLocked(null),它的意思是将桟顶的activity复位,看它的代码
final boolean resumeTopActivityLocked(ActivityRecord prev, Bundle options) { // Find the first activity that is not finishing. //找到桟顶的activity记录 ActivityRecord next = topRunningActivityLocked(null); // Remember how we'll process this pause/resume situation, and ensure // that the state is reset however we wind up proceeding. final boolean userLeaving = mUserLeaving; mUserLeaving = false; //由于系统刚启动,桟顶肯定没有activity,所以next为null if (next == null) {  // There are no more activities!  Let's just start up the  // Launcher...  if (mMainStack) {   ActivityOptions.abort(options);   //程序执行到这里,桌面就会被调起来   return mService.startHomeActivityLocked(mCurrentUser);  } } ...此处省略}

最后看看桌面是如何被调起来的:

boolean startHomeActivityLocked(int userId) { if (mHeadless) {  // Added because none of the other calls to ensureBootCompleted seem to fire  // when running headless.  ensureBootCompleted();  return false; } if (mFactoryTest == SystemServer.FACTORY_TEST_LOW_LEVEL   && mTopAction == null) {  // We are running in factory test mode, but unable to find  // the factory test app, so just sit around displaying the  // error message and don't try to start anything.  return false; } Intent intent = new Intent(  mTopAction,  mTopData != null ? Uri.parse(mTopData) : null); intent.setComponent(mTopComponent); if (mFactoryTest != SystemServer.FACTORY_TEST_LOW_LEVEL) {  //其实就是为intent加上CATEGORY_HOME这个Category,接着就发送隐式intent来调起所有满足条件的桌面  //这也是第三方桌面存在的价值  intent.addCategory(Intent.CATEGORY_HOME); } ActivityInfo aInfo =  resolveActivityInfo(intent, STOCK_PM_FLAGS, userId); if (aInfo != null) {  intent.setComponent(new ComponentName(    aInfo.applicationInfo.packageName, aInfo.name));  // Don't do this if the home app is currently being  // instrumented.  aInfo = new ActivityInfo(aInfo);  aInfo.applicationInfo = getAppInfoForUser(aInfo.applicationInfo, userId);  ProcessRecord app = getProcessRecordLocked(aInfo.processName,    aInfo.applicationInfo.uid);  if (app == null || app.instrumentationClass == null) {   intent.setFlags(intent.getFlags() | Intent.FLAG_ACTIVITY_NEW_TASK);   //这里启动桌面activity,到此为止,桌面被启动了,我们就可以认为手机开机完成了   mMainStack.startActivityLocked(null, intent, null, aInfo,     null, null, 0, 0, 0, null, 0, null, false, null);  } } return true;}
到此为止,桌面已经启动了,也就意味着手机的开机启动过程已经完成,后续我们就可以通过桌面来启动各个应用了,根据本文的介绍,我们已经知道apk启动时dalvik进程的创建过程,关于单个activity的启动过程,请参看我之前写的另一篇文章Android源码分析-Activity的启动过程。到此为止,本文结束了,相信大家对Android系统的开机启动过程应该有了一个感性的认识了。

           

再分享一下我老师大神的人工智能教程吧。零基础!通俗易懂!风趣幽默!还带黄段子!希望你也加入到我们人工智能的队伍中来!https://blog.csdn.net/jiangjunshow

内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: