您的位置:首页 > 其它

堆和堆的应用:堆排序和优先队列

2017-11-19 11:57 281 查看
堆和堆的应用堆排序和优先队列


堆的应用堆排序

堆的应用优先队列

堆的应用海量实数中一亿级别以上找到TopK一万级别以下的数集合

总结

references

堆和堆的应用:堆排序和优先队列

1.堆

堆(Heap)是一种重要的数据结构,是实现优先队列(Priority Queues)

首选的数据结构。由于堆有很多种变体,包括二项式堆、斐波那契堆等,但是这里只考虑最常见的就是二叉堆(以下简称堆)。

堆是一棵满足一定性质的二叉树,具体的讲堆具有如下性质:父节点的键值总是不大于它的孩子节点的键值(小顶堆), 堆可以分为小顶堆大顶堆,这里以小顶堆为例,其主要包含的操作有:

- insert()

- extractMin

- peek(findMin)

- delete(i)

由于堆是一棵形态规则的二叉树,因此堆的父节点和孩子节点存在如下关系:

设父节点的编号为
i
, 则其左孩子节点的编号为
2*i+1
, 右孩子节点的编号为
2*i+2


设孩子节点的编号为
i
, 则其父节点的编号为
(i-1)/2


由于二叉树良好的形态已经包含了父节点和孩子节点的关系信息,因此就可以不使用链表而简单的使用数组来存储堆。

要实现堆的基本操作,涉及到的两个关键的函数

-
siftUp(i, x)
: 将位置
i
的元素
x
向上调整,以满足堆得性质,常常是用于
insert
后,用于调整堆;

-
siftDown(i, x)
:同理,常常是用于
delete(i)
后,用于调整堆;

具体的操作如下:

private void siftUp(int i) {
int key = nums[i];
for (; i > 0;) {
int p = (i - 1) >>> 1;
if (nums[p] <= key)
break;
nums[i] = nums[p];
i = p;
}
nums[i] = key;
}


private void siftDown(int i) {
int key = nums[i];
for (;i < nums.length / 2;) {
int child = (i << 1) + 1;
if (child + 1 < nums.length && nums[child] > nums[child+1])
child++;
if (key <= nums[child])
break;
nums[i] = nums[child];
i = child;
}
nums[i] = key;
}


可以看到
siftUp
siftDown
不停的在父节点和子节点之间比较、交换;在不超过
logn
的时间复杂度就可以完成一次操作。

有了这两个基本的函数,就可以实现上述提及的堆的基本操作。

首先是如何建堆,实现建堆操作有两个思路:

一个是不断地
insert
insert
后调用的是
siftUp


另一个将原始数组当成一个需要调整的堆,然后自底向上地

在每个位置
i
调用
siftDown(i)
,完成后我们就可以得到一个满足堆性质的堆。这里考虑后一种思路:

通常堆的
insert
操作是将元素插入到堆尾,由于新元素的插入可能违反堆的性质,因此需要调用
siftUp
操作自底向上调整堆;堆移除堆顶元素操作是将堆顶元素删除,然后将堆最后一个元素放置在堆顶,接着执行
siftDown
操作,同理替换堆顶元素也是相同的操作。

建堆

// 建立小顶堆
private void buildMinHeap(int[] nums) {
int size = nums.length;
for (int j = size / 2 - 1; j >= 0; j--)
siftDown(nums, j, size);
}


那么建堆操作的时间复杂度是多少呢?答案是
O(n)
。虽然
siftDown
的操作时间是
logn
,但是由于高度在递减的同时,每一层的节点数量也在成倍减少,最后通过数列错位相减可以得到时间复杂度是
O(n)


extractMin

由于堆的固有性质,堆的根便是最小的元素,因此peek操作就是返回根
nums[0]
元素即可;

若要将
nums[0]
删除,可以将末尾的元素
nums[n-1]
覆盖
nums[0]
,然后将堆得
size = size-1
,调用
siftDown(0)
调整堆。时间复杂度为
logn


peek

同上

delete(i)

删除堆中位置为
i
的节点,涉及到两个函数
siftUp
siftDown
,时间复杂度为
logn
,具体步骤是,

- 将元素
last
覆盖元素
i
,然后
siftDown


- 检查是否需要
siftUp


注意到堆的删除操作,如果是删除堆的根节点,则不用考虑执行siftUp的操作;若删除的是堆的非根节点,则要视情况决定是siftDown还是siftUp操作,两个操作是互斥的。

public int delete(int i) {
int key = nums[i];
//将last元素移动过来,先siftDown; 再视情况考虑是否siftUp
int last = nums[i] = nums[size-1];
size--;
siftDown(i);
//check #i的node的键值是否确实发生改变(是否siftDown操作生效),若发生改变,则ok,否则为确保堆性质,则需要siftUp
if (i < size && nums[i] == last) {
System.out.println("delete siftUp");
siftUp(i);
}
return key;
}


case 1 :

删除中间节点
i
21,将最后一个节点复制过来;



由于没有进行
siftDown
操作,节点
i
的值仍然为6,因此为确保堆的性质,执行
siftUp
操作;



case 2

删除中间节点
i
,将值为11的节点复制过来,执行
siftDown
操作;



由于执行
siftDown
操作后,节点
i
的值不再是
11
,因此就不用再执行
siftUp
操作了,因为堆的性质在
siftDown
操作生效后已经得到了保持。



可以看出,堆的基本操作都依赖于两个核心的函数
siftUp
siftDown
;较为完整的
Heap
代码如下:

class Heap {
private final static int N = 100; //default size
private int[] nums;
private int size;

public Heap(int[] nums) {
this.nums = nums;
this.size = nums.length;
heapify(this.nums);
}

public Heap() {
this.nums = new int
;
}

/**
* heapify an array, O(n)
* @param nums An array to be heapified.
*/
private void heapify(int[] nums) {
for (int j = (size - 1) >> 1; j >= 0; j--)
siftDown(j);
}

/**
* append x to heap
* O(logn)
* @param x
* @return
*/
public int insert(int x) {
if (size >= this.nums.length)
expandSpace();
size += 1;
nums[size-1] = x;
siftUp(size-1);
return x;
}

/**
* delete an element located in i position.
* O(logn)
* @param i
* @return
*/
public int delete(int i) {
rangeCheck(i);
int key = nums[i];
//将last元素覆盖过来,先siftDown; 再视情况考虑是否siftUp;
int last = nums[i] = nums[size-1];
size--;
siftDown(i);
//check #i的node的键值是否确实发生改变,若发生改变,则ok,否则为确保堆性质,则需要siftUp;
if (i < size && nums[i] == last)
siftUp(i);
return key;
}

/**
* remove the root of heap, return it's value, and adjust heap to maintain the heap's property.
* O(logn)
* @return
*/
public int extractMin() {
rangeCheck(0);
int key = nums[0], last = nums[size-1];
nums[0] = last;
size--;
siftDown(0);
return key;
}
/**
* return an element's index, if not exists, return -1;
* O(n)
* @param x
* @return
*/
public int search(int x) {
for (int i = 0; i < size; i++)
if (nums[i] == x)
return i;
return -1;
}
/**
* return but does not remove the root of heap.
* O(1)
* @return
*/
public int peek() {
rangeCheck(0);
return nums[0];
}

private void siftUp(int i) { int key = nums[i]; for (; i > 0;) { int p = (i - 1) >>> 1; if (nums[p] <= key) break; nums[i] = nums[p]; i = p; } nums[i] = key; }

private void siftDown(int i) {
int key = nums[i];
for (;i < size / 2;) {
int child = (i << 1) + 1;
if (child + 1 < size && nums[child] > nums[child+1])
child++;
if (key <= nums[child])
break;
nums[i] = nums[child];
i = child;
}
nums[i] = key;
}

private void rangeCheck(int i) {
if (!(0 <= i && i < size))
throw new RuntimeException("Index is out of boundary");
}

private void expandSpace() {
this.nums = Arrays.copyOf(this.nums, size * 2);
}

@Override
public String toString() {
// TODO Auto-generated method stub
StringBuilder sb = new StringBuilder();
sb.append("[");
for (int i = 0; i < size; i++)
sb.append(String.format((i != 0 ? ", " : "") + "%d", nums[i]));
sb.append("]\n");
return sb.toString();
}
}


2.堆的应用:堆排序

运用堆的性质,我们可以得到一种常用的、稳定的、高效的排序算法————堆排序。堆排序的时间复杂度为
O(n*log(n))
,空间复杂度为
O(1)
,堆排序的思想是:

对于含有
n
个元素的无序数组
nums
, 构建一个堆(这里是小顶堆)
heap
,然后执行
extractMin
得到最小的元素,这样执行
n
次得到序列就是排序好的序列。

如果是降序排列则是小顶堆;否则利用大顶堆。

Trick

由于
extractMin
执行完毕后,最后一个元素
last
已经被移动到了
root
,因此可以将
extractMin
返回的元素放置于最后,这样可以得到
sort in place
的堆排序算法。

具体操作如下:

int[] n = new int[] {1,9,5,6,8,3,1,2,5,9,86};
Heap h = new Heap(n);
for (int i = 0; i < n.length; i++)
n[n.length-1-i] = h.extractMin();


当然,如果不使用前面定义的
heap
,则可以手动写堆排序,由于堆排序设计到建堆extractMin, 两个操作都公共依赖于
siftDown
函数,因此我们只需要实现
siftDown
即可。(trick:由于建堆操作可以采用
siftUp
或者
siftDown
,而
extractMin
是需要
siftDown
操作,因此取公共部分,则采用
siftDown
建堆)。

这里便于和前面统一,采用小顶堆数组进行降序排列。


public void heapSort(int[] nums) {
int size = nums.length;
buildMinHeap(nums);
while (size != 0) {
// 交换堆顶和最后一个元素
int tmp = nums[0];
nums[0] = nums[size - 1];
nums[size - 1] = tmp;
size--;
siftDown(nums, 0, size);
}
}

// 建立小顶堆 private void buildMinHeap(int[] nums) { int size = nums.length; for (int j = size / 2 - 1; j >= 0; j--) siftDown(nums, j, size); }
private void siftDown(int[] nums, int i, int newSize) {
int key = nums[i];
while (i < newSize >>> 1) {
int leftChild = (i << 1) + 1;
int rightChild = leftChild + 1;
// 最小的孩子,比最小的孩子还小
int min = (rightChild >= newSize || nums[leftChild] < nums[rightChild]) ? leftChild : rightChild;
if (key <= nums[min])
break;
nums[i] = nums[min];
i = min;
}
nums[i] = key;
}


3.堆的应用:优先队列

优先队列是一种抽象的数据类型,它和堆的关系类似于,
List
和数组、链表的关系一样;我们常常使用堆来实现优先队列,因此很多时候堆和优先队列都很相似,它们只是概念上的区分。

优先队列的应用场景十分的广泛:

常见的应用有:

- Dijkstra’s algorithm(单源最短路问题中需要在邻接表中找到某一点的最短邻接边,这可以将复杂度降低。)

- Huffman coding(贪心算法的一个典型例子,采用优先队列构建最优的前缀编码树(
prefixEncodeTree
))

- Prim’s algorithm for minimum spanning tree

- Best-first search algorithms

这里简单介绍上述应用之一:Huffman coding

Huffman编码是一种变长的编码方案,对于每一个字符,所对应的二进制位串的长度是不一致的,但是遵守如下原则:

- 出现频率高的字符的二进制位串的长度小

- 不存在一个字符
c
的二进制位串
s
是除
c
外任意字符的二进制位串的前缀

遵守这样原则的Huffman编码属于变长编码,可以无损的压缩数据,压缩后通常可以节省20%-90%的空间,具体压缩率依赖于数据的固有结构。

Huffman编码的实现就是要找到满足这两种原则的 字符-二进制位串 对照关系,即找到最优前缀码的编码方案(前缀码:没有任何字符编码后的二进制位串是其他字符编码后位串的前缀)。

这里我们需要用到二叉树来表达最优前缀码,该树称为最优前缀码树

一棵最优前缀码树看起来像这样:



算法思想:用一个属性为
freqeunce
关键字的最小优先队列Q,将当前最小的两个元素x,y合并得到一个新元素z(z.frequence = x.freqeunce + y.frequence),

然后插入到优先队列中Q中,这样执行
n-1
次合并后,得到一棵最优前缀码树(这里不讨论算法的证明)。

一个常见的构建流程如下:



树中指向某个节点左孩子的边上表示位
0
,指向右孩子的边上的表示位
1
,这样遍历一棵最优前缀码树就可以得到对照表。

import java.util.Comparator;
import java.util.HashMap;
import java.util.Map;
import java.util.PriorityQueue;

/**
*
*                            root
*                            /   \
*                    --------- ----------
*                    |c:freq | | c:freq |
*                    --------- ----------
*
*
*/
public class HuffmanEncodeDemo {

public static void main(String[] args) {
// TODO Auto-generated method stub
Node[] n = new Node[6];
float[] freq = new float[] { 9, 5, 45, 13, 16, 12 };
char[] chs = new char[] { 'e', 'f', 'a', 'b', 'd', 'c' };
HuffmanEncodeDemo demo = new HuffmanEncodeDemo();
Node root = demo.buildPrefixEncodeTree(n, freq, chs);
Map<Character, String> collector = new HashMap<>();
StringBuilder sb = new StringBuilder();
demo.tranversalPrefixEncodeTree(root, collector, sb);
System.out.println(collector);
String s = "abcabcefefefeabcdbebfbebfbabc";
StringBuilder sb1 = new StringBuilder();
for (char c : s.toCharArray()) {
sb1.append(collector.get(c));
}
System.out.println(sb1.toString());
}

public Node buildPrefixEncodeTree(Node[] n, float[] freq, char[] chs) {
PriorityQueue<Node> pQ = new PriorityQueue<>(new Comparator<Node>() {
public int compare(Node o1, Node o2) {
return o1.item.freq > o2.item.freq ? 1 : o1.item.freq == o2.item.freq ? 0 : -1;
};
});
Node e = null;
for (int i = 0; i < chs.length; i++) {
n[i] = e = new Node(null, null, new Item(chs[i], freq[i]));
pQ.add(e);
}

for (int i = 0; i < n.length - 1; i++) {
Node x = pQ.poll(), y = pQ.poll();
Node z = new Node(x, y, new Item('$', x.item.freq + y.item.freq));
pQ.add(z);
}
return pQ.poll();
}

/**
* tranversal
* @param root
* @param collector
* @param sb
*/
public void tranversalPrefixEncodeTree(Node root, Map<Character, String> collector, StringBuilder sb) {
// leaf node
if (root.left == null && root.right == null) {
collector.put(root.item.c, sb.toString());
return;
}
Node left = root.left, right = root.right;
tranversalPrefixEncodeTree(left, collector, sb.append(0));
sb.delete(sb.length() - 1, sb.length());
tranversalPrefixEncodeTree(right, collector, sb.append(1));
sb.delete(sb.length() - 1, sb.length());
}

}

class Node {
public Node left, right;
public Item item;

public Node(Node left, Node right, Item item) {
super();
this.left = left;
this.right = right;
this.item = item;
}

}

class Item {
public char c;
public float freq;

public Item(char c, float freq) {
super();
this.c = c;
this.freq = freq;
}
}


输出如下:

{a=0, b=101, c=100, d=111, e=1101, f=1100}
010110001011001101110011011100110111001101010110011110111011011100101110110111001010101100


4 堆的应用:海量实数中(一亿级别以上)找到TopK(一万级别以下)的数集合。

A:通常遇到找一个集合中的TopK问题,想到的便是排序,因为常见的排序算法例如快排算是比较快了,然后再取出K个TopK数,时间复杂度为
O(nlogn)
,当
n
很大的时候这个时间复杂度还是很大的;

B:另一种思路就是打擂台的方式,每个元素与K个待选元素比较一次,时间复杂度很高:
O(k*n)
,此方案明显逊色于前者。

对于一亿数据来说,A方案大约是
26.575424*n


C:由于我们只需要TopK,因此不需要对所有数据进行排序,可以利用堆得思想,维护一个大小为K的小顶堆,然后依次遍历每个元素
e
, 若元素
e
大于堆顶元素
root
,则删除
root
,将
e
放在堆顶,然后调整,时间复杂度为
logK
;若小于或等于,则考察下一个元素。这样遍历一遍后,最小堆里面保留的数就是我们要找的
topK
,整体时间复杂度为
O(k+n*logk)
约等于
O(n*logk)
,大约是
13.287712*n
(由于k与n数量级差太多),这样时间复杂度下降了约一半。

A、B、C三个方案中,C通常是优于B的,因为logK通常是小于k的,当
K
n
的数量级相差越大,这种方式越有效。

以下为具体操作:

import java.io.File;
import java.io.FileNotFoundException;
import java.io.PrintWriter;
import java.io.UnsupportedEncodingException;
import java.util.Arrays;
import java.util.Scanner;
import java.util.Set;
import java.util.TreeSet;
public class TopKNumbersInMassiveNumbersDemo {

public static void main(String[] args) {
// TODO Auto-generated method stub
int[] topK = new int[]{50001,50002,50003,50004,50005};
genData(1000 * 1000 * 1000, 500, topK);
long t = System.currentTimeMillis();
findTopK(topK.length);
System.out.println(String.format("cost:%fs", (System.currentTimeMillis() - t) * 1.0 / 1000));
}

public static void genData(int N, int maxRandomNumer, int[] topK) {
File f = new File("data.txt");
int k = topK.length;
Set<Integer> index = new TreeSet<>();
for (;;) {
index.add((int)(Math.random() * N));
if (index.size() == k)
break;
}
System.out.println(index);
int j = 0;
try {
PrintWriter pW = new PrintWriter(f, "UTF-8");
for (int i = 0; i < N; i++)
if(!index.contains(i))
pW.println((int)(Math.random() * maxRandomNumer));
else
pW.println(topK[j++]);
pW.flush();
} catch (FileNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (UnsupportedEncodingException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}

public static void findTopK(int k) {
int[] nums = new int[k];
//read
File f = new File("data.txt");
try {
Scanner scanner = new Scanner(f);
for (int j = 0;j < k; j++)
nums[j] = scanner.nextInt();
heapify(nums);
//core
while (scanner.hasNextInt()) {
int a = scanner.nextInt();
if (a <= nums[0])
continue;
else {
nums[0] = a;
siftDown(0, k, nums);
}
}
System.out.println(Arrays.toString(nums));
} catch (FileNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}

}

//O(n), minimal heap
public static void heapify(int[] nums) {
int size = nums.length;
for (int j = (size - 1) >> 1; j >= 0; j--)
siftDown(j, size, nums);
}

private static void siftDown(int i, int n, int[] nums) {
int key = nums[i];
for (;i < (n >>> 1);) {
int child = (i << 1) + 1;
if (child + 1 < n && nums[child] > nums[child+1])
child++;
if (key <= nums[child])
break;
nums[i] = nums[child];
i = child;
}
nums[i] = key;
}
}


ps:大致测试了一下,10亿个数中找到top5需要140秒左右,应该是很快了。

5 总结

堆是基于树的满足一定约束的重要数据结构,存在许多变体例如二叉堆、二项式堆、斐波那契堆(很高效)等。

堆的几个基本操作都依赖于两个重要的函数
siftUp
siftDown
,堆的
insert
通常是在堆尾插入新元素并
siftUp
调整堆,而
extractMin
是在

删除堆顶元素,然后将最后一个元素放置堆顶并调用
siftDown
调整堆。

二叉堆是常用的一种堆,其是一棵二叉树;由于二叉树良好的性质,因此常常采用数组来存储堆。

堆得基本操作的时间复杂度如下表所示:

heapifyinsertpeekextractMindelete(i)
O(n)
O(logn)
O(1)
O(logn)
O(logn)
- 二叉堆通常被用来实现堆排序算法,堆排序可以
sort in place
,堆排序的时间复杂度的上界是
O(nlogn)
,是一种很优秀的排序算法。由于存在相同键值的两个元素处于两棵子树中,而两个元素的顺序可能会在后续的堆调整中发生改变,因此堆排序不是稳定的。降序排序需要建立小顶堆,升序排序需要建立大顶堆。

堆是实现抽象数据类型优先队列的一种方式,优先队列有很广泛的应用,例如Huffman编码中使用优先队列利用贪心算法构建最优前缀编码树。

堆的另一个应用就是在海量数据中找到TopK个数,思想是维护一个大小为K的二叉堆,然后不断地比较堆顶元素,判断是否需要执行替换对顶元素的操作,采用

此方法的时间复杂度为
n*logk
,当
k
n
的数量级差距很大的时候,这种方式是很有效的方法。

6 references

[1] https://en.wikipedia.org/wiki/Heap_(data_structure)

[2] https://en.wikipedia.org/wiki/Heapsort

[3] https://en.wikipedia.org/wiki/Priority_queue

[4] https://www.cnblogs.com/swiftma/p/6006395.html

[5] Thomas H.Cormen, Charles E.Leiserson, Ronald L.Rivest, Clifford Stein.算法导论[M].北京:机械工业出版社,2015:245-249

[6] Jon Bentley.编程珠玑[M].北京:人民邮电出版社,2015:161-174
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: