您的位置:首页 > 其它

ArrayList的底层实现原理

2017-11-09 20:09 483 查看
一、对于ArrayList需要掌握的七点内容

ArrayList的创建:即构造器
往ArrayList中添加对象:即add(E)方法
获取ArrayList中的单个对象:即get(int index)方法
删除ArrayList中的对象:即remove(E)方法
遍历ArrayList中的对象:即iterator,在实际中更常用的是增强型的for循环去做遍历
判断对象是否存在于ArrayList中:contain(E)
ArrayList中对象的排序:主要取决于所采取的排序算法(以后讲)
二、源码分析

2.1、ArrayList的创建(常见的两种方式)

List<String> strList = new ArrayList<String>();
List<String> strList2 = new ArrayList<String>(2);


ArrayList源代码:

基本属性:

//对象数组:ArrayList的底层数据结构
private transient Object[] elementData;
//elementData中已存放的元素的个数,注意:不是elementData的容量
private int size;


注意:

transient关键字的作用:在采用Java默认的序列化机制的时候,被该关键字修饰的属性不会被序列化。
ArrayList类实现了java.io.Serializable接口,即采用了Java默认的序列化机制
上面的elementData属性采用了transient来修饰,表明其不使用Java默认的序列化机制来实例化,但是该属性是ArrayList的底层数据结构,在网络传输中一定需要将其序列化,之后使用的时候还需要反序列化,那不采用Java默认的序列化机制,那采用什么呢?直接翻到源码的最下边有两个方法,发现ArrayList自己实现了序列化和反序列化的方法


View
Code

构造器:

/**
* 创建一个容量为initialCapacity的空的(size==0)对象数组
*/
public ArrayList(int initialCapacity) {
super();//即父类protected AbstractList() {}
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity:" + initialCapacity);
this.elementData = new Object[initialCapacity];
}

/**
* 默认初始化一个容量为10的对象数组
*/
public ArrayList() {
this(10);//即上边的public ArrayList(int initialCapacity){}构造器
}


在我们执行new ArrayList<String>()时,会调用上边的无参构造器,创造一个容量为10的对象数组。

在我们执行new ArrayList<String>(2)时,会调用上边的public ArrayList(int initialCapacity),创造一个容量为2的对象数组。

注意:

上边有参构造器的super()方法是ArrayList父类AbstractList的构造方法,这个构造方法如下,是一个空构造方法:

protected AbstractList() {
}


在实际使用中,如果我们能对所需的ArrayList的大小进行判断,有两个好处:
节省内存空间(eg.我们只需要放置两个元素到数组,new ArrayList<String>(2))
避免数组扩容(下边会讲)引起的效率下降(eg.我们只需要放置大约37个元素到数组,new ArrayList<String>(40))

2.2、往ArrayList中添加对象(常见的两个方法add(E)和addAll(Collection<? extends E> c))

2.2.1、[b]add(E)[/b]

strList2.add("hello");


ArrayList源代码:

/**
* 向elementData中添加元素
*/
public boolean add(E e) {
ensureCapacity(size + 1);//确保对象数组elementData有足够的容量,可以将新加入的元素e加进去
elementData[size++] = e;//加入新元素e,size加1
return true;
}


/**
* 确保数组的容量足够存放新加入的元素,若不够,要扩容
*/
public void ensureCapacity(int minCapacity) {
modCount++;
int oldCapacity = elementData.length;//获取数组大小(即数组的容量)
//当数组满了,又有新元素加入的时候,执行扩容逻辑
if (minCapacity > oldCapacity) {
Object oldData[] = elementData;
int newCapacity = (oldCapacity * 3) / 2 + 1;//新容量为旧容量的1.5倍+1
if (newCapacity < minCapacity)//如果扩容后的新容量还是没有传入的所需的最小容量大或等于(主要发生在addAll(Collection<? extends E> c)中)
newCapacity = minCapacity;//新容量设为最小容量
elementData = Arrays.copyOf(elementData, newCapacity);//复制新容量
}
}


在上述代码的扩容结束后,调用了Arrays.copyOf(elementData, newCapacity)方法,这个方法中:对于我们这里而言,先创建了一个新的容量为newCapacity的对象数组,然后使用System.arraycopy()方法将旧的对象数组复制到新的对象数组中去了。

注意:

modCount变量用于在遍历集合(iterator())时,检测是否发生了add、remove操作。
2.2.2、addAll(Collection<? extends E> c)

使用方式:

List<String> strList = new ArrayList<String>();
strList.add("jigang");
strList.add("nana");
100ff
strList.add("nana2");

List<String> strList2 = new ArrayList<String>(2);
strList2.addAll(strList);


源代码:

/**
* 将c全部加入elementData
*/
public boolean addAll(Collection<? extends E> c) {
Object[] a = c.toArray();//将c集合转化为对象数组a
int numNew = a.length;//获取a对象数组的容量
ensureCapacity(size + numNew);//确保对象数组elementData有足够的容量,可以将新加入的a对象数组加进去
System.arraycopy(a, 0, elementData, size, numNew);//将对象数组a拷贝到elementData中去
size += numNew;//重新设置elementData中已加入的元素的个数
return numNew != 0;//若加入的是空集合则返回false
}


注意:

从上述代码可以看出,若加入的c是空集合,则返回false
ensureCapacity(size + numNew);这个方法在上边讲
System.arraycopy()方法定义如下:

public static native void arraycopy(Object src,  int  srcPos, Object dest, int destPos,  int length);


将数组src从下标为srcPos开始拷贝,一直拷贝length个元素到dest数组中,在dest数组中从destPos开始加入先的srcPos数组元素。

除了以上两种常用的add方法外,还有如下两种:

2.2.3、add(int index, E element)

/**
* 在特定位置(只能是已有元素的数组的特定位置)index插入元素E
*/
public void add(int index, E element) {
//检查index是否在已有的数组中
if (index > size || index < 0)
throw new IndexOutOfBoundsException("Index:"+index+",Size:"+size);
ensureCapacity(size + 1);//确保对象数组elementData有足够的容量,可以将新加入的元素e加进去
System.arraycopy(elementData, index, elementData, index+1, size-index);//将index及其后边的所有的元素整块后移,空出index位置
elementData[index] = element;//插入元素
size++;//已有数组元素个数+1
}


注意:

index<=size才行,并不是index<elementData.length
2.2.4、set(int index, E element)

/**
* 更换特定位置index上的元素为element,返回该位置上的旧值
*/
public E set(int index, E element) {
RangeCheck(index);//检查索引范围
E oldValue = (E) elementData[index];//旧值
elementData[index] = element;//该位置替换为新值
return oldValue;//返回旧值
}


2.3、获取ArrayList中的单个对象(get(int index))

实现方式:

ArrayList<String> strList2 = new ArrayList<String>(2);
strList2.add("hello");
strList2.add("nana");
strList2.add("nana2");
System.out.println(strList2.get(0));


源代码:

/**
* 按照索引查询对象E
*/
public E get(int index) {
RangeCheck(index);//检查索引范围
return (E) elementData[index];//返回元素,并将Object转型为E
}


/**
* 检查索引index是否超出size-1
*/
private void RangeCheck(int index) {
if (index >= size)
throw new IndexOutOfBoundsException("Index:"+index+",Size:"+size);
}


注:这里对index进行了索引检查,是为了将异常内容写的详细一些并且将检查的内容缩小(index<0||index>=size,注意这里的size是已存储元素的个数);

事实上不检查也可以,因为对于数组而言,如果index不满足要求(index<0||index>=length,注意这里的length是数组的容量),都会直接抛出数组越界异常,而假设数组的length为10,当前的size是2,你去计算array[9],这时候得出是null,这也是上边get为什么减小检查范围的原因。

 

2.4、删除ArrayList中的对象

2.4.1、remove(Object o)

使用方式:

strList2.remove("hello");


源代码:

 

/**
* 从前向后移除第一个出现的元素o
*/
public boolean remove(Object o) {
if (o == null) {//移除对象数组elementData中的第一个null
for (int index = 0; index < size; index++)
if (elementData[index] == null) {
fastRemove(index);
return true;
}
} else {//移除对象数组elementData中的第一个o
for (int index = 0; index < size; index++)
if (o.equals(elementData[index])) {
fastRemove(index);
return true;
}
}
return false;
}

/*
* 删除单个位置的元素,是ArrayList的私有方法
*/
private void fastRemove(int index) {
modCount++;
int numMoved = size - index - 1;
if (numMoved > 0)//删除的不是最后一个元素
System.arraycopy(elementData, index + 1, elementData, index,numMoved);//删除的元素到最后的元素整块前移
elementData[--size] = null; //将最后一个元素设为null,在下次gc的时候就会回收掉了
}


 2.4.2、remove(int index)

使用方式:

strList2.remove(0);


源代码:

/**
* 删除指定索引index下的元素,返回被删除的元素
*/
public E remove(int index) {
RangeCheck(index);//检查索引范围

E oldValue = (E) elementData[index];//被删除的元素
fastRemove(index);
return oldValue;
}


注意:

remove(Object o)需要遍历数组,remove(int index)不需要,只需要判断索引符合范围即可,所以,通常:后者效率更高。
 2.5、判断对象是否存在于ArrayList中([b]contains(E))[/b]

源代码:

/**
* 判断动态数组是否包含元素o
*/
public boolean contains(Object o) {
return indexOf(o) >= 0;
}

/**
* 返回第一个出现的元素o的索引位置
*/
public int indexOf(Object o) {
if (o == null) {//返回第一个null的索引
for (int i = 0; i < size; i++)
if (elementData[i] == null)
return i;
} else {//返回第一个o的索引
for (int i = 0; i < size; i++)
if (o.equals(elementData[i]))
return i;
}
return -1;//若不包含,返回-1
}

/**
* 返回最后一个出现的元素o的索引位置
*/
public int lastIndexOf(Object o) {
if (o == null) {
for (int i = size - 1; i >= 0; i--)
if (elementData[i] == null)
return i;
} else {
for (int i = size - 1; i >= 0; i--)
if (o.equals(elementData[i]))
return i;
}
return -1;
}


注意:

indexOf(Object o)返回第一个出现的元素o的索引;lastIndexOf(Object o)返回最后一个o的索引
2.6、遍历ArrayList中的对象(iterator())

使用方式:

List<String> strList = new ArrayList<String>();
strList.add("jigang");
strList.add("nana");
strList.add("nana2");

Iterator<String> it = strList.iterator();
while (it.hasNext()) {
System.out.println(it.next());
}


源代码:iterator()方法是在AbstractList中实现的,该方法返回AbstractList的一个内部类Itr对象

public Iterator<E> iterator() {
return new Itr();//返回一个内部类对象
}


Itr:

private class Itr implements Iterator<E> {

int cursor = 0;//标记位:标记遍历到哪一个元素
int expectedModCount = modCount;//标记位:用于判断是否在遍历的过程中,是否发生了add、remove操作

//检测对象数组是否还有元素
public boolean hasNext() {
return cursor != size();//如果cursor==size,说明已经遍历完了,上一次遍历的是最后一个元素
}

//获取元素
public E next() {
checkForComodification();//检测在遍历的过程中,是否发生了add、remove操作
try {
E next = get(cursor++);
return next;
} catch (IndexOutOfBoundsException e) {//捕获get(cursor++)方法的IndexOutOfBoundsException
checkForComodification();
throw new NoSuchElementException();
}
}

//检测在遍历的过程中,是否发生了add、remove等操作
final void checkForComodification() {
if (modCount != expectedModCount)//发生了add、remove操作,这个我们可以查看add等的源代码,发现会出现modCount++
throw new ConcurrentModificationException();
}
}


遍历的整个流程结合"使用方式"与"Itr的注释"来看。注:上述的Itr我去掉了一个此时用不到的方法和属性。

三、总结

ArrayList基于数组方式实现,无容量的限制(会扩容)
添加元素时可能要扩容(所以最好预判一下),删除元素时不会减少容量(若希望减少容量,trimToSize()),删除元素时,将删除掉的位置元素置为null,下次gc就会回收这些元素所占的内存空间。
线程不安全
add(int index, E element):添加元素到数组中指定位置的时候,需要将该位置及其后边所有的元素都整块向后复制一位
get(int index):获取指定位置上的元素时,可以通过索引直接获取(O(1))
remove(Object o)需要遍历数组
remove(int index)不需要遍历数组,只需判断index是否符合条件即可,效率比remove(Object o)高
contains(E)需要遍历数组
做以上总结,主要是为了与后边的LinkedList作比较。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签:  集合 list ArrayList