您的位置:首页 > 其它

双目立体视觉匹配算法-----SAD匹配算法、BM算法、SGBM算法、GC算法

2017-11-06 15:21 597 查看
一、 SAD算法

1.算法原理
        SAD(Sum of absolute differences)是一种图像匹配算法。基本思想:差的绝对值之和。此算法常用于图像块匹配,将每个像素对应数值之差的绝对值求和,据此评估两个图像块的相似度。该算法快速、但并不精确,通常用于多级处理的初步筛选。
2.基本流程

输入:两幅图像,一幅Left-Image,一幅Right-Image

对左图,依次扫描,选定一个锚点:

(1)构造一个小窗口,类似于卷积核;

(2)用窗口覆盖左边的图像,选择出窗口覆盖区域内的所有像素点;

(3)同样用窗口覆盖右边的图像并选择出覆盖区域的像素点;

(4)左边覆盖区域减去右边覆盖区域,并求出所有像素点灰度差的绝对值之和;

(5)移动右边图像的窗口,重复(3)-(4)的处理(这里有个搜索范围,超过这个范围跳出);

(6)找到这个范围内SAD值最小的窗口,即找到了左图锚点的最佳匹配的像素块。



参考代码:SAD.h

[cpp]
view plain
copy

print?

#include"iostream"  
#include"opencv2/opencv.hpp"  
#include"iomanip"  
using namespace std;  
using namespace cv;  
  
class SAD  
{  
    public:  
        SAD():winSize(7),DSR(30){}  
        SAD(int _winSize,int _DSR):winSize(_winSize),DSR(_DSR){}  
        Mat computerSAD(Mat &L,Mat &R); //计算SAD  
    private:  
        int winSize; //卷积核的尺寸  
        int DSR;     //视差搜索范围  
      
};  
  
 Mat SAD::computerSAD(Mat &L,Mat &R)  
    {  
        int Height=L.rows;  
        int Width=L.cols;  
        Mat Kernel_L(Size(winSize,winSize),CV_8U,Scalar::all(0));  
        Mat Kernel_R(Size(winSize,winSize),CV_8U,Scalar::all(0));  
        Mat Disparity(Height,Width,CV_8U,Scalar(0)); //视差图  
  
        for(int i=0;i<Width-winSize;i++)  //左图从DSR开始遍历  
        {  
            for(int j=0;j<Height-winSize;j++)  
            {  
                Kernel_L=L(Rect(i,j,winSize,winSize));  
                Mat MM(1,DSR,CV_32F,Scalar(0)); //  
  
                for(int k=0;k<DSR;k++)  
                {  
                    int x=i-k;  
                    if(x>=0)  
                    {  
                    Kernel_R=R(Rect(x,j,winSize,winSize));  
                    Mat Dif;  
                    absdiff(Kernel_L, Kernel_R, Dif);//  
                    Scalar ADD=sum(Dif);  
                    float a=ADD[0];  
                    MM.at<float>(k)=a;  
                    }  
                      
                }  
                Point minLoc;  
                minMaxLoc(MM, NULL, NULL,&minLoc,NULL);  
                  
                int loc=minLoc.x;  
                //int loc=DSR-loc;  
                Disparity.at<char>(j,i)=loc*16;  
                  
            }  
            double rate=double(i)/(Width);  
            cout<<"已完成"<<setprecision(2)<<rate*100<<"%"<<endl; //处理进度  
        }  
        return Disparity;  
    }  

#include"iostream"
#include"opencv2/opencv.hpp"
#include"iomanip"
using namespace std;
using namespace cv;

class SAD
{
public:
SAD():winSize(7),DSR(30){}
SAD(int _winSize,int _DSR):winSize(_winSize),DSR(_DSR){}
Mat computerSAD(Mat &L,Mat &R); //计算SAD
private:
int winSize; //卷积核的尺寸
int DSR;     //视差搜索范围

};

Mat SAD::computerSAD(Mat &L,Mat &R)
{
int Height=L.rows;
int Width=L.cols;
Mat Kernel_L(Size(winSize,winSize),CV_8U,Scalar::all(0));
Mat Kernel_R(Size(winSize,winSize),CV_8U,Scalar::all(0));
Mat Disparity(Height,Width,CV_8U,Scalar(0)); //视差图

for(int i=0;i<Width-winSize;i++)  //左图从DSR开始遍历
{
for(int j=0;j<Height-winSize;j++)
{
Kernel_L=L(Rect(i,j,winSize,winSize));
Mat MM(1,DSR,CV_32F,Scalar(0)); //

for(int k=0;k<DSR;k++)
{
int x=i-k;
if(x>=0)
{
Kernel_R=R(Rect(x,j,winSize,winSize));
Mat Dif;
absdiff(Kernel_L, Kernel_R, Dif);//
Scalar ADD=sum(Dif);
float a=ADD[0];
MM.at<float>(k)=a;
}

}
Point minLoc;
minMaxLoc(MM, NULL, NULL,&minLoc,NULL);

int loc=minLoc.x;
//int loc=DSR-loc;
Disparity.at<char>(j,i)=loc*16;

}
double rate=double(i)/(Width);
cout<<"已完成"<<setprecision(2)<<rate*100<<"%"<<endl; //处理进度
}
return Disparity;
}


[cpp]
view plain
copy

print?

// MySAD.cpp : 定义控制台应用程序的入口点。  
//  
#include "stdafx.h"  
#include"SAD.h"  
int _tmain(int argc, _TCHAR* argv[])  
{  
    Mat Img_L=imread("imL.png",0);  
    Mat Img_R=imread("imR.png",0);  
    Mat Disparity;    //视差图  
      
    //SAD mySAD;  
    SAD mySAD(7,30);  
    Disparity=mySAD.computerSAD(Img_L,Img_R);  
  
    imshow("Img_L",Img_L);  
    imshow("Img_R",Img_R);  
    imshow("Disparity",Disparity);  
    waitKey();  
    return 0;  
}  

// MySAD.cpp : 定义控制台应用程序的入口点。
//
#include "stdafx.h"
#include"SAD.h"
int _tmain(int argc, _TCHAR* argv[])
{
Mat Img_L=imread("imL.png",0);
Mat Img_R=imread("imR.png",0);
Mat Disparity;    //视差图

//SAD mySAD;
SAD mySAD(7,30);
Disparity=mySAD.computerSAD(Img_L,Img_R);

imshow("Img_L",Img_L);
imshow("Img_R",Img_R);
imshow("Disparity",Disparity);
waitKey();
return 0;
}


[cpp]
view plain
copy

print?

  




二、BM算法:速度很快,效果一般

SGBM算法 Stereo Processing by Semiglobal Matching and Mutual InformationGC算法 算法文献:Realistic CG Stereo Image Dataset with Ground Truth Disparity Maps参考:http://blog.csdn.net/wqvbjhc/article/details/6260844
[cpp] view plain copy print?void BM()  
{  
  IplImage * img1 = cvLoadImage("left.png",0);  
    IplImage * img2 = cvLoadImage("right.png",0);  
    CvStereoBMState* BMState=cvCreateStereoBMState();  
    assert(BMState);  
    BMState->preFilterSize=9;  
    BMState->preFilterCap=31;  
    BMState->SADWindowSize=15;  
    BMState->minDisparity=0;  
    BMState->numberOfDisparities=64;  
    BMState->textureThreshold=10;  
    BMState->uniquenessRatio=15;  
    BMState->speckleWindowSize=100;  
    BMState->speckleRange=32;  
    BMState->disp12MaxDiff=1;  
  
    CvMat* disp=cvCreateMat(img1->height,img1->width,CV_16S);  
    CvMat* vdisp=cvCreateMat(img1->height,img1->width,CV_8U);  
    int64 t=getTickCount();  
    cvFindStereoCorrespondenceBM(img1,img2,disp,BMState);  
    t=getTickCount()-t;  
    cout<<"Time elapsed:"<<t*1000/getTickFrequency()<<endl;  
    cvSave("disp.xml",disp);  
    cvNormalize(disp,vdisp,0,255,CV_MINMAX);  
    cvNamedWindow("BM_disparity",0);  
    cvShowImage("BM_disparity",vdisp);  
    cvWaitKey(0);  
    //cvSaveImage("cones\\BM_disparity.png",vdisp);  
    cvReleaseMat(&disp);  
    cvReleaseMat(&vdisp);  
    cvDestroyWindow("BM_disparity");  
}  
void BM()
{
  IplImage * img1 = cvLoadImage("left.png",0);
IplImage * img2 = cvLoadImage("right.png",0);
CvStereoBMState* BMState=cvCreateStereoBMState();
assert(BMState);
BMState->preFilterSize=9;
BMState->preFilterCap=31;
BMState->SADWindowSize=15;
BMState->minDisparity=0;
BMState->numberOfDisparities=64;
BMState->textureThreshold=10;
BMState->uniquenessRatio=15;
BMState->speckleWindowSize=100;
BMState->speckleRange=32;
BMState->disp12MaxDiff=1;

CvMat* disp=cvCreateMat(img1->height,img1->width,CV_16S);
CvMat* vdisp=cvCreateMat(img1->height,img1->width,CV_8U);
int64 t=getTickCount();
cvFindStereoCorrespondenceBM(img1,img2,disp,BMState);
t=getTickCount()-t;
cout<<"Time elapsed:"<<t*1000/getTickFrequency()<<endl;
cvSave("disp.xml",disp);
cvNormalize(disp,vdisp,0,255,CV_MINMAX);
cvNamedWindow("BM_disparity",0);
cvShowImage("BM_disparity",vdisp);
cvWaitKey(0);
//cvSaveImage("cones\\BM_disparity.png",vdisp);
cvReleaseMat(&disp);
cvReleaseMat(&vdisp);
cvDestroyWindow("BM_disparity");
}



三、SGBM算法

作为一种全局匹配算法,立体匹配的效果明显好于局部匹配算法,但是同时复杂度上也要远远大于局部匹配算法。算法主要是参考Stereo Processing by Semiglobal Matching and Mutual Information。

opencv中实现的SGBM算法计算匹配代价没有按照原始论文的互信息作为代价,而是按照块匹配的代价。

参考:http://www.opencv.org.cn/forum.php?mod=viewthread&tid=23854

[cpp]
view plain
copy

print?

#include <highgui.h>  
#include <cv.h>  
#include <cxcore.h>  
#include <iostream>  
using namespace std;  
using namespace cv;  
int main()  
{  
  
    IplImage * img1 = cvLoadImage("left.png",0);  
    IplImage * img2 = cvLoadImage("right.png",0);  
    cv::StereoSGBM sgbm;  
    int SADWindowSize = 9;  
    sgbm.preFilterCap = 63;  
    sgbm.SADWindowSize = SADWindowSize > 0 ? SADWindowSize : 3;  
    int cn = img1->nChannels;  
    int numberOfDisparities=64;  
    sgbm.P1 = 8*cn*sgbm.SADWindowSize*sgbm.SADWindowSize;  
    sgbm.P2 = 32*cn*sgbm.SADWindowSize*sgbm.SADWindowSize;  
    sgbm.minDisparity = 0;  
    sgbm.numberOfDisparities = numberOfDisparities;  
    sgbm.uniquenessRatio = 10;  
    sgbm.speckleWindowSize = 100;  
    sgbm.speckleRange = 32;  
    sgbm.disp12MaxDiff = 1;  
    Mat disp, disp8;  
    int64 t = getTickCount();  
    sgbm((Mat)img1, (Mat)img2, disp);  
    t = getTickCount() - t;  
    cout<<"Time elapsed:"<<t*1000/getTickFrequency()<<endl;  
    disp.convertTo(disp8, CV_8U, 255/(numberOfDisparities*16.));  
  
    namedWindow("left", 1);  
    cvShowImage("left", img1);  
    namedWindow("right", 1);  
    cvShowImage("right", img2);  
    namedWindow("disparity", 1);  
    imshow("disparity", disp8);  
    waitKey();  
    imwrite("sgbm_disparity.png", disp8);     
    cvDestroyAllWindows();  
    return 0;  
}  

#include <highgui.h>
#include <cv.h>
#include <cxcore.h>
#include <iostream>
using namespace std;
using namespace cv;
int main()
{

IplImage * img1 = cvLoadImage("left.png",0);
IplImage * img2 = cvLoadImage("right.png",0);
cv::StereoSGBM sgbm;
int SADWindowSize = 9;
sgbm.preFilterCap = 63;
sgbm.SADWindowSize = SADWindowSize > 0 ? SADWindowSize : 3;
int cn = img1->nChannels;
int numberOfDisparities=64;
sgbm.P1 = 8*cn*sgbm.SADWindowSize*sgbm.SADWindowSize;
sgbm.P2 = 32*cn*sgbm.SADWindowSize*sgbm.SADWindowSize;
sgbm.minDisparity = 0;
sgbm.numberOfDisparities = numberOfDisparities;
sgbm.uniquenessRatio = 10;
sgbm.speckleWindowSize = 100;
sgbm.speckleRange = 32;
sgbm.disp12MaxDiff = 1;
Mat disp, disp8;
int64 t = getTickCount();
sgbm((Mat)img1, (Mat)img2, disp);
t = getTickCount() - t;
cout<<"Time elapsed:"<<t*1000/getTickFrequency()<<endl;
disp.convertTo(disp8, CV_8U, 255/(numberOfDisparities*16.));

namedWindow("left", 1);
cvShowImage("left", img1);
namedWindow("right", 1);
cvShowImage("right", img2);
namedWindow("disparity", 1);
imshow("disparity", disp8);
waitKey();
imwrite("sgbm_disparity.png", disp8);
cvDestroyAllWindows();
return 0;
}




四、GC算法 效果最好,速度最慢

[cpp]
view plain
copy

print?

void GC()  
{  
    IplImage * img1 = cvLoadImage("left.png",0);  
    IplImage * img2 = cvLoadImage("right.png",0);  
    CvStereoGCState* GCState=cvCreateStereoGCState(64,3);  
    assert(GCState);  
    cout<<"start matching using GC"<<endl;  
    CvMat* gcdispleft=cvCreateMat(img1->height,img1->width,CV_16S);  
    CvMat* gcdispright=cvCreateMat(img2->height,img2->width,CV_16S);  
    CvMat* gcvdisp=cvCreateMat(img1->height,img1->width,CV_8U);  
    int64 t=getTickCount();  
    cvFindStereoCorrespondenceGC(img1,img2,gcdispleft,gcdispright,GCState);  
    t=getTickCount()-t;  
    cout<<"Time elapsed:"<<t*1000/getTickFrequency()<<endl;  
    //cvNormalize(gcdispleft,gcvdisp,0,255,CV_MINMAX);  
    //cvSaveImage("GC_left_disparity.png",gcvdisp);  
    cvNormalize(gcdispright,gcvdisp,0,255,CV_MINMAX);  
    cvSaveImage("GC_right_disparity.png",gcvdisp);  
  
  
    cvNamedWindow("GC_disparity",0);  
    cvShowImage("GC_disparity",gcvdisp);  
    cvWaitKey(0);  
    cvReleaseMat(&gcdispleft);  
    cvReleaseMat(&gcdispright);  
    cvReleaseMat(&gcvdisp);  
}  

void GC()
{
IplImage * img1 = cvLoadImage("left.png",0);
IplImage * img2 = cvLoadImage("right.png",0);
CvStereoGCState* GCState=cvCreateStereoGCState(64,3);
assert(GCState);
cout<<"start matching using GC"<<endl;
CvMat* gcdispleft=cvCreateMat(img1->height,img1->width,CV_16S);
CvMat* gcdispright=cvCreateMat(img2->height,img2->width,CV_16S);
CvMat* gcvdisp=cvCreateMat(img1->height,img1->width,CV_8U);
int64 t=getTickCount();
cvFindStereoCorrespondenceGC(img1,img2,gcdispleft,gcdispright,GCState);
t=getTickCount()-t;
cout<<"Time elapsed:"<<t*1000/getTickFrequency()<<endl;
//cvNormalize(gcdispleft,gcvdisp,0,255,CV_MINMAX);
//cvSaveImage("GC_left_disparity.png",gcvdisp);
cvNormalize(gcdispright,gcvdisp,0,255,CV_MINMAX);
cvSaveImage("GC_right_disparity.png",gcvdisp);

cvNamedWindow("GC_disparity",0);
cvShowImage("GC_disparity",gcvdisp);
cvWaitKey(0);
cvReleaseMat(&gcdispleft);
cvReleaseMat(&gcdispright);
cvReleaseMat(&gcvdisp);
}


内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: