您的位置:首页 > 编程语言

H.265/HEVC码率控制总体框架与代码解读(中)

2017-09-29 10:24 465 查看


第二部分接着第一部分,介绍初始化之后的具体比特分配操作。附上传送门如下

上:介绍码率控制的初始化部分

中:介绍码率控制的具体实现

下:介绍码率控制的应用以及码率控制的一些研究方向

2.码率控制的比特分配部分

从初始化部分可以看出,码率控制从GOP,frame,LCU逐级分配比特数,在frame与LCU这两块中还要根据比特数计算出对应的QP,从而运用于实际编码之中。
码率控制相较于整个HEVC框架而言是简单的,初始化的函数部分基本就占据了TEncRateCtrl.cpp的一半篇幅,剩下的部分大致分为三块:比特分配、QP计算以及数据更新。接下来就从这三块进行解读。
2.1比特分配
2.1.1
GOP比特分配

首先是GOP的比特分配,在1.2节中提到的xEstGOPTargetBits(
) 函数指明了对应的分配方法。代码如下

Int TEncRCGOP::xEstGOPTargetBits( TEncRCSeq* encRCSeq, Int GOPSize )
{
Int realInfluencePicture = min( g_RCSmoothWindowSize, encRCSeq->getFramesLeft() );    //这里用到了滑动窗口g_RCSmoothWindowSize的概念,realInfluencePicture取滑动窗口40与编码剩余比特数的较小值,以精确计算GOP应得的targetBits,具体算法见JCTVC-0103中的(7),图附在代码块之后
Int averageTargetBitsPerPic = (Int)( encRCSeq->getTargetBits() / encRCSeq->getTotalFrames() );
Int currentTargetBitsPerPic = (Int)( ( encRCSeq->getBitsLeft() - averageTargetBitsPerPic * (encRCSeq->getFramesLeft() - realInfluencePicture) ) / realInfluencePicture );
Int targetBits = currentTargetBitsPerPic * GOPSize;
if ( targetBits < 200 )
{
targetBits = 200;   // at least allocate 200 bits for one GOP
}
return targetBits;
}





2.1.2 frame的比特分配
根据2.1.1中GOP分配的比特数,可以得到GOP内各帧的比特数,代码如下

Int TEncRCPic::xEstPicTargetBits( TEncRCSeq* encRCSeq, TEncRCGOP* encRCGOP )
{
Int targetBits        = 0;
Int GOPbitsLeft       = encRCGOP->getBitsLeft();
Int i;
Int currPicPosition = encRCGOP->getNumPic()-encRCGOP->getPicLeft();
Int currPicRatio    = encRCSeq->getBitRatio( currPicPosition );    //对应1.1节的各帧权重
Int totalPicRatio   = 0;
for ( i=currPicPosition; i<encRCGOP->getNumPic(); i++ )
{
totalPicRatio += encRCSeq->getBitRatio( i );
}
targetBits  = Int( ((Double)GOPbitsLeft) * currPicRatio / totalPicRatio );       //2.1.1中给GOP分配的比特数乘上当前帧所占的权重,得到对应比特数,即JCTVC-0103(9),图附在代码块之后
if ( targetBits < 100 )
{
targetBits = 100;   // at least allocate 100 bits for one picture
}
if ( m_encRCSeq->getFramesLeft() > 16 )       //对targetBits进行微调,对应的算法暂未找到
{
targetBits = Int( g_RCWeightPicRargetBitInBuffer * targetBits + g_RCWeightPicTargetBitInGOP * m_encRCGOP->getTargetBitInGOP( currPicPosition ) );
}
return targetBits;
}





2.1.3 LCU的比特分配
得到各帧的比特数后,可以对帧内各个LCU进行比特分配,代码如下

Double TEncRCPic::getLCUTargetBpp(SliceType eSliceType)
{
Int   LCUIdx    = getLCUCoded();//当前LCU的序号
Double bpp      = -1.0;
Int avgBits     = 0;
if (eSliceType == I_SLICE)
{
Int noOfLCUsLeft = m_numberOfLCU - LCUIdx + 1;
Int bitrateWindow = min(4,noOfLCUsLeft);    //类似于之前的滑动窗口
Double MAD      = getLCU(LCUIdx).m_costIntra;      //计算出每个LCU对应的MAD值
if (m_remainingCostIntra > 0.1 )     //m_remainingCostIntra为当前帧的总MAD
{
Double weightedBitsLeft = (m_bitsLeft*bitrateWindow+(m_bitsLeft-getLCU(LCUIdx).m_targetBitsLeft)*noOfLCUsLeft)/(Double)bitrateWindow;
avgBits = Int( MAD*weightedBitsLeft/m_remainingCostIntra );
}
else
{
avgBits = Int( m_bitsLeft / m_LCULeft );
}
m_remainingCostIntra -= MAD;  //分配完一个LCU比特后,更新剩余的m_remainingCostIntra
}
else      //非I帧
{
Double totalWeight = 0;
for ( Int i=LCUIdx; i<m_numberOfLCU; i++ )
{
totalWeight += m_LCUs[i].m_bitWeight;
}
Int realInfluenceLCU = min( g_RCLCUSmoothWindowSize, getLCULeft() );
avgBits = (Int)( m_LCUs[LCUIdx].m_bitWeight - ( totalWeight - m_bitsLeft ) / realInfluenceLCU + 0.5 );
}
if ( avgBits < 1 )
{
avgBits = 1;
}
bpp = ( Double )avgBits/( Double )m_LCUs[ LCUIdx ].m_numberOfPixel;      //求出的比特数转化为bpp(bits per pixel)计算
m_LCUs[ LCUIdx ].m_targetBits = avgBits;
return bpp;
}

2.2 QP计算
计算出GOP,frame,LCU的比特之后,为了进行编码,需要传递QP值给编码器。计算出来的QP会直接影响编码器给每一帧(LCU)分配的比特数,因此QP计算变得尤为重要,不同于以往的H.264中的R-Q模型,H.265中采取R-lambda,lambda-QP两步计算QP值,以提高精确性。
2.2.1 frame的QP计算

Double TEncRCPic::estimatePicLambda( list<TEncRCPic*>& listPreviousPictures, SliceType eSliceType)
{
Double alpha         = m_encRCSeq->getPicPara( m_frameLevel ).m_alpha;
Double beta          = m_encRCSeq->getPicPara( m_frameLevel ).m_beta;
Double bpp       = (Double)m_targetBits/(Double)m_numberOfPixel;
Double estLambda;
if (eSliceType == I_SLICE)
{
estLambda = calculateLambdaIntra(alpha, beta, pow(m_totalCostIntra/(Double)m_numberOfPixel, BETA1), bpp);   //针对I帧有一个修正的比特数
}
else
{
estLambda = alpha * pow( bpp, beta );       //即JCTVC-K0103 (10),用alpha,beta计算lambda,图附于代码块后
}
Double lastLevelLambda = -1.0;
Double lastPicLambda   = -1.0;
Double lastValidLambda = -1.0;
list<TEncRCPic*>::iterator it;
for ( it = listPreviousPictures.begin(); it != listPreviousPictures.end(); it++ )
{
if ( (*it)->getFrameLevel() == m_frameLevel )
{
lastLevelLambda = (*it)->getPicActualLambda();
}
lastPicLambda     = (*it)->getPicActualLambda();
if ( lastPicLambda > 0.0 )
{
lastValidLambda = lastPicLambda;
}
}
if ( lastLevelLambda > 0.0 )    //对当前帧的lambda进行限定,与前一帧、前一个层的lambda差值不能超过这个范围,JCTVC-K0103 的3.2部分
{
lastLevelLambda = Clip3( 0.1, 10000.0, lastLevelLambda );
estLambda = Clip3( lastLevelLambda * pow( 2.0, -3.0/3.0 ), lastLevelLambda * pow( 2.0, 3.0/3.0 ), estLambda );
}
if ( lastPicLambda > 0.0 )
{
lastPicLambda = Clip3( 0.1, 2000.0, lastPicLambda );
estLambda = Clip3( lastPicLambda * pow( 2.0, -10.0/3.0 ), lastPicLambda * pow( 2.0, 10.0/3.0 ), estLambda );
}
else if ( lastValidLambda > 0.0 )
{
lastValidLambda = Clip3( 0.1, 2000.0, lastValidLambda );
estLambda = Clip3( lastValidLambda * pow(2.0, -10.0/3.0), lastValidLambda * pow(2.0, 10.0/3.0), estLambda );
}
else
{
estLambda = Clip3( 0.1, 10000.0, estLambda );
}
if ( estLambda < 0.1 )
{
estLambda = 0.1;
}
m_estPicLambda = estLambda;
Double totalWeight = 0.0;
// initial BU bit allocation weight
for ( Int i=0; i<m_numberOfLCU; i++ )
{
Double alphaLCU, betaLCU;
if ( m_encRCSeq->getUseLCUSeparateModel() )
{
alphaLCU = m_encRCSeq->getLCUPara( m_frameLevel, i ).m_alpha;
betaLCU  = m_encRCSeq->getLCUPara( m_frameLevel, i ).m_beta;
}
else
{
alphaLCU = m_encRCSeq->getPicPara( m_frameLevel ).m_alpha;
betaLCU  = m_encRCSeq->getPicPara( m_frameLevel ).m_beta;
}
m_LCUs[i].m_bitWeight =  m_LCUs[i].m_numberOfPixel * pow( estLambda/alphaLCU, 1.0/betaLCU );
if ( m_LCUs[i].m_bitWeight < 0.01 )
{
m_LCUs[i].m_bitWeight = 0.01;
}
totalWeight += m_LCUs[i].m_bitWeight;
}
for ( Int i=0; i<m_numberOfLCU; i++ )
{
Double BUTargetBits = m_targetBits * m_LCUs[i].m_bitWeight / totalWeight;
m_LCUs[i].m_bitWeight = BUTargetBits;
}
return estLambda;
}
Int TEncRCPic::estimatePicQP( Double lambda, list<TEncRCPic*>& listPreviousPictures )
{
Int QP = Int( 4.2005 * log( lambda ) + 13.7122 + 0.5 );     //经典的lambda-QP模型
Int lastLevelQP = g_RCInvalidQPValue;
Int lastPicQP   = g_RCInvalidQPValue;
Int lastValidQP = g_RCInvalidQPValue;
list<TEncRCPic*>::iterator it;
for ( it = listPreviousPictures.begin(); it != listPreviousPictures.end(); it++ )
{
if ( (*it)->getFrameLevel() == m_frameLevel )
{
lastLevelQP = (*it)->getPicActualQP();
}
lastPicQP = (*it)->getPicActualQP();
if ( lastPicQP > g_RCInvalidQPValue )
{
lastValidQP = lastPicQP;
}
}
if ( lastLevelQP > g_RCInvalidQPValue )       //于lambda相同,对QP进行限定
{
QP = Clip3( lastLevelQP - 3, lastLevelQP + 3, QP );
}
if( lastPicQP > g_RCInvalidQPValue )
{
QP = Clip3( lastPicQP - 10, lastPicQP + 10, QP );
}
else if( lastValidQP > g_RCInvalidQPValue )
{
QP = Clip3( lastValidQP - 10, lastValidQP + 10, QP );
}
return QP;
}

2.2.2 LCU的QP计算
LCU的QP计算与frame的QP计算步骤类似,在此不进行赘述。

2.3 参数更新
在计算完QP后,对LCU及frame进行参数更新
2.3.1 frame的参数更新

Void TEncRCSeq::updateAfterPic ( Int bits )
{
m_bitsLeft -= bits;    //更新GOP中剩余比特数
m_framesLeft--;
}

Void TEncRCPic::updateAfterPicture( Int actualHeaderBits, Int actualTotalBits, Double averageQP, Double averageLambda, SliceType eSliceType)
{
m_picActualHeaderBits = actualHeaderBits;
m_picActualBits       = actualTotalBits;
if ( averageQP > 0.0 )
{
m_picQP             = Int( averageQP + 0.5 );
}
else
{
m_picQP             = g_RCInvalidQPValue;
}
m_picLambda           = averageLambda;
Double alpha = m_encRCSeq->getPicPara( m_frameLevel ).m_alpha;
Double beta  = m_encRCSeq->getPicPara( m_frameLevel ).m_beta;
if (eSliceType == I_SLICE)
{
updateAlphaBetaIntra(&alpha, &beta);
}
else
{
// update parameters
Double picActualBits = ( Double )m_picActualBits;
Double picActualBpp  = picActualBits/(Double)m_numberOfPixel;
Double calLambda     = alpha * pow( picActualBpp, beta );
Double inputLambda   = m_picLambda;
if ( inputLambda < 0.01 || calLambda < 0.01 || picActualBpp < 0.0001 )
{
alpha *= ( 1.0 - m_encRCSeq->getAlphaUpdate() / 2.0 );
beta  *= ( 1.0 - m_encRCSeq->getBetaUpdate() / 2.0 );
alpha = Clip3( g_RCAlphaMinValue, g_RCAlphaMaxValue, alpha );
beta  = Clip3( g_RCBetaMinValue,  g_RCBetaMaxValue,  beta  );
TRCParameter rcPara;
rcPara.m_alpha = alpha;
rcPara.m_beta  = beta;
m_encRCSeq->setPicPara( m_frameLevel, rcPara );
return;
}
calLambda = Clip3( inputLambda / 10.0, inputLambda * 10.0, calLambda );
alpha += m_encRCSeq->getAlphaUpdate() * ( log( inputLambda ) - log( calLambda ) ) * alpha;  //alpha、beta的更新依据JCTVC-K0103的(11-13),附图如下
Double lnbpp = log( picActualBpp );
lnbpp = Clip3( -5.0, -0.1, lnbpp );
beta  += m_encRCSeq->getBetaUpdate() * ( log( inputLambda ) - log( calLambda ) ) * lnbpp;
alpha = Clip3( g_RCAlphaMinValue, g_RCAlphaMaxValue, alpha );
beta  = Clip3( g_RCBetaMinValue,  g_RCBetaMaxValue,  beta  );
}
TRCParameter rcPara;
rcPara.m_alpha = alpha;
rcPara.m_beta  = beta;
m_encRCSeq->setPicPara( m_frameLevel, rcPara );
if ( m_frameLevel == 1 )
{
Double currLambda = Clip3( 0.1, 10000.0, m_picLambda );
Double updateLastLambda = g_RCWeightHistoryLambda * m_encRCSeq->getLastLambda() + g_RCWeightCurrentLambda * currLambda;
m_encRCSeq->setLastLambda( updateLastLambda );
}
}


2.3.2 LCU的参数更新

Void TEncRCPic::updateAfterCTU( Int LCUIdx, Int bits, Int QP, Double lambda, Bool updateLCUParameter )
{
m_LCUs[LCUIdx].m_actualBits = bits;
m_LCUs[LCUIdx].m_QP         = QP;
m_LCUs[LCUIdx].m_lambda     = lambda;
m_LCULeft--;
m_bitsLeft   -= bits;    //frame中剩余比特数的更新
m_pixelsLeft -= m_LCUs[LCUIdx].m_numberOfPixel;
if ( !updateLCUParameter )
{
return;
}
if ( !m_encRCSeq->getUseLCUSeparateModel() )
{
return;
}
Double alpha = m_encRCSeq->getLCUPara( m_frameLevel, LCUIdx ).m_alpha;
Double beta  = m_encRCSeq->getLCUPara( m_frameLevel, LCUIdx ).m_beta;
Int LCUActualBits   = m_LCUs[LCUIdx].m_actualBits;
Int LCUTotalPixels  = m_LCUs[LCUIdx].m_numberOfPixel;
Double bpp         = ( Double )LCUActualBits/( Double )LCUTotalPixels;
Double calLambda   = alpha * pow( bpp, beta );
Double inputLambda = m_LCUs[LCUIdx].m_lambda;
if( inputLambda < 0.01 || calLambda < 0.01 || bpp < 0.0001 )
{
alpha *= ( 1.0 - m_encRCSeq->getAlphaUpdate() / 2.0 );
beta  *= ( 1.0 - m_encRCSeq->getBetaUpdate() / 2.0 );
alpha = Clip3( g_RCAlphaMinValue, g_RCAlphaMaxValue, alpha );
beta  = Clip3( g_RCBetaMinValue,  g_RCBetaMaxValue,  beta  );
TRCParameter rcPara;
rcPara.m_alpha = alpha;
rcPara.m_beta  = beta;
m_encRCSeq->setLCUPara( m_frameLevel, LCUIdx, rcPara );
return;
}
calLambda = Clip3( inputLambda / 10.0, inputLambda * 10.0, calLambda );
alpha += m_encRCSeq->getAlphaUpdate() * ( log( inputLambda ) - log( calLambda ) ) * alpha;    //与frame类似,进行alpha、beta的更新
Double lnbpp = log( bpp );
lnbpp = Clip3( -5.0, -0.1, lnbpp );
beta  += m_encRCSeq->getBetaUpdate() * ( log( inputLambda ) - log( calLambda ) ) * lnbpp;
alpha = Clip3( g_RCAlphaMinValue, g_RCAlphaMaxValue, alpha );
beta  = Clip3( g_RCBetaMinValue,  g_RCBetaMaxValue,  beta  );
TRCParameter rcPara;
rcPara.m_alpha = alpha;
rcPara.m_beta  = beta;
m_encRCSeq->setLCUPara( m_frameLevel, LCUIdx, rcPara );
}


至此,整个码率控制具体代码部分解读完毕。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: