您的位置:首页 > 其它

【并行计算-CUDA开发】【视频开发】ffmpeg Nvidia硬件加速总结

2017-08-28 01:49 627 查看
2017年5月25日


0. 概述

FFmpeg可通过Nvidia的GPU进行加速,其中高层接口是通过Video Codec SDK来实现GPU资源的调用。Video Codec SDK包含完整的的高性能工具、源码及文档,支持,可以运行在Windows和Linux系统之上。从软件上来说,SDK包含两类硬件加速接口,用于编码加速的NVENCODE
API和用于解码加速的NVDECODE API(之前被称为NVCUVID API)。从硬件上来说,Nvidia GPU有一到多个编解码器(解码器又称硬件加速引擎),它们独立于CUDA核。从视频格式上来说,编码支持H.264、H.265、无损压缩,位深度支持8bit、10bit,色域空间支持YUV 4:4:4和4:2:0,分辨率支持最高8K;解码支持MPEG-2、VC1、VP8、VP9、H.264、H.265、无损压缩,位深度支持8 bit、10bit、12bit,色域空间支持YUV 4:2:0,分辨率支持最高8K。Video
Codec SDK已经被集成在ffmpeg工程中,但是ffmpeg对编解码器配置参数较少,如果需要充分的发挥编解码器特性,还需要直接使用SDK进行编程。 



Nvidia编码器与CPU上的x264的性能对比与质量对比如下图所示,性能以每秒钟编码帧数为参考指标,质量以PSNR为参考指标。 



可看出性能方面Nvidia编码器是x264的2~5倍,质量方面对于fast stream场景来说Nvidia编码器优于x264,高质量场景来说低于x264,但没有说明是哪款Nvidia的产品,以及对比测试的x264运行平台的CPU的型号及平台能力。下图可以看出对于1080P@30fps,NVENC可支持21路的编码或9路的高质量编码。 



不同型号的GPU的编码的能力表格如下: 



Nvidia解码器性能指标如下图所示,不过只有两款Tesla的产品。 



解码的能力表格如下: 




1. 安装驱动与SDK


1.1 前期准备

需要关闭所有开源的显示驱动 

vi /etc/modprobe.d/blacklist.conf 

添加 

blacklist amd76x_edac 

blacklist vga16fb 

blacklist nouveau 

blacklist nvidiafb 

blacklist rivatv


1.2 驱动安装

(1). 删除原来的驱动 

apt-get remove –purge nvidia* 

(2). 官方下载run文件的驱动进行安装 

service lightdm stop 

chmod 777 NVIDIA-linux-x86_64-367.44.run 

./NVIDIA-Linux-x86_64-367.44.run 

service lightdm start 

reboot 

(2). 驱动安装验证 

运行nvidia-smi,有如下输出则安装成功 



问题1:如果重启之后发现图形界面进不去,发生了循环登录,说明视频驱动没有安装完全,需要重装驱动,保险的方法是联网安装 

console中执行 

apt-get remove –purge nvidia-* 

add-apt-repository ppa:graphics-drivers/ppa 

apt-get update 

service lightdm stop 

apt-get install nvidia-375 nvidia-settings nvidia-prime 

nvidia-xconfig 

apt-get install mesa-common-dev //安装缺少的库 

apt-get install freeglut3-dev 

update-initramfs -u 

reboot


1.3 SDK安装

(1). 官方下载run文件的驱动进行安装 

cuda_8.0.44_linux.run –no-opengl-libs //不需要opengl支持 

apt-get install freeglut3-dev build-essential libx11-dev 

apt-get install libxmu-dev libxi-dev libgl1-mesa-glx libglu1-mesa 

apt-get install libglu1-mesa-dev 

gedit ~/.bashrc 

添加 

export PATH=/usr/local/cuda/bin:$PATH

export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH

gedit /etc/ld.so.conf.d/cuda.conf 

添加 

/usr/local/cuda/lib64 

/lib 

/lib32 

/lib64 

/usr/lib 

/user/lib32 

sudo ldconfig 

(2). SDK安装验证 

运行nvcc -V,有如下输出则安装成功。 




2. Sample测试


2.1 Sample编译

进入Samples目录,运行make,如果没有安装OpenGL相关库,则NvDecodeGL会编译不通过 

每个工程的含义可参考《NVIDIA_Video_Codec_SDK_Samples_Guide》 

NvEncoder: 基本功能的编码 

NvEncoderCudaInterpo: CUDA surface的编码 

NvEncoderD3D9Interpo: D3D9 surface的编码,Linux下没有 

NvEncoderLowLatency: 低延时特征的使用,如帧内刷新与参考图像有效性(RPI) 

NvEncoderPerf: 最大性能的编码 

NvTranscoder: NVENC的转码能力 

NvDecodeD3D9: 视频解码D3D9显示,Linux下没有 

NvDecodeD3D11: 视频解码D3D11显示,Linux下没有 

NvDecodeGL: 视频解码OpenGL显示


2.2 Sample测试

参见《NVIDIA_Video_Codec_SDK_Samples_Guide》 

问题2:如果运行例子后显示libcuda.so failed! 

在/usr/lib/x86_64-linux-gnu下制作链接libcuda.so,链接至libcuda.so.375.26


3. ffmpeg结合


3.1 ffmpeg编译


3.1.1 前期工作

确保Video_Codec_SDK_7.1.9/Samples/common/inc 目录下有基本的头文件 

确保Video_Codec_SDK_7.1.9/Samples/common/lib/linux/x86_64 目录下有libGLEW.a


3.1.2 configure命令

configure \
--enable-version3 \
--enable-libfdk-aac \
--enable-libmp3lame \
--enable-libx264 \
--enable-nvenc \
--extra-cflags=-I/root/workspace/Video_Codec_SDK_7.1.9/Samples/common/inc \
--extra-ldflags=-L/root/workspace/Video_Codec_SDK_7.1.9/Samples/common/lib/linux/x86_64 \
--enable-shared \
--enable-gpl \
--enable-postproc \
--enable-nonfree \
--enable-avfilter \
--enable-pthreads
1
2
3
4
5
6
7
8
9
10
11
12
13
14


3.1.2 make

运行make & make install


3.2 ffmpeg测试

运行ffmpeg -codecs|grep nvenc 

显示一下信息说明
ffmpeg version 3.0.git Copyright (c) 2000-2016 the FFmpeg developers
built with gcc 5.4.0 (Ubuntu 5.4.0-6ubuntu1~16.04.1) 20160609
configuration: --enable-version3 --enable-libfdk-aac --enable-libmp3lame --enable-libx264 --enable-nvenc --extra-cflags=-I/workspace/Video_Codec_SDK_7.1.9/Samples/common/inc --extra-ldflags=-L/workspace/Video_Codec_SDK_7.1.9/Samples/common/lib/linux/x86_64 --enable-shared --enable-gpl --enable-postproc --enable-nonfree --enable-avfilter --enable-pthreads
libavutil      55. 29.100 / 55. 29.100
libavcodec     57. 54.100 / 57. 54.100
libavformat    57. 48.100 / 57. 48.100
libavdevice    57.  0.102 / 57.  0.102
libavfilter     6. 57.100 /  6. 57.100
libswscale      4.  1.100 /  4.  1.100
libswresample   2.  1.100 /  2.  1.100
libpostproc    54.  0.100 / 54.  0.100
DEV.LS h264                 H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10 (encoders: libx264 libx264rgb h264_nvenc nvenc nvenc_h264 )
DEV.L. hevc                 H.265 / HEVC (High Efficiency Video Coding) (encoders: nvenc_hevc hevc_nvenc )
1
2
3
4
5
6
7
8
9
10
11
12
13

其中前缀含义如下: 

前缀含义 

D….. = Decoding supported 

.E…. = Encoding supported 

..V… = Video codec 

..A… = Audio codec 

..S… = Subtitle codec 

…I.. = Intra frame-only codec 

….L. = Lossy compression 

…..S = Lossless compression


3.3 编解码器使用方法

h265编码测试 

(1). ffmpeg -s 1920x1080 -pix_fmt yuv420p -i BQTerrace_1920x1080_60.yuv -vcodec hevc_nvenc -r 60 -y 2_60.265 

(2). ffmpeg -s 1920x1080 -pix_fmt yuv420p -i BQTerrace_1920x1080_60.yuv -vcodec hevc_nvenc -r 30 -y 2_30.265

h264编码测试 

(3). ffmpeg -s 1920x1080 -pix_fmt yuv420p -i BQTerrace_1920x1080_60.yuv -vcodec h264_nvenc -r 60 -y 2_60.264 

(4). ffmpeg -s 1920x1080 -pix_fmt yuv420p -i BQTerrace_1920x1080_60.yuv -vcodec h264_nvenc -r 30 -y 2_30.264

h264转h265 

(5). ffmpeg -i 1_60.264 -vcodec hevc_nvenc -r 60 -y 2_60_264to265.265 

(6). ffmpeg -i 1_30.264 -vcodec hevc_nvenc -r 30 -y 2_30_264to265.265

h265转h264 

(7). ffmpeg -i 1_60.265 -vcodec h264_nvenc -r 60 -y 2_60_265to264.264 

(8). ffmpeg -i 1_30.265 -vcodec h264_nvenc -r 30 -y 2_30_265to264.264


3.4 程序开发使用方法

av_find_encoder_by_name(“h264_nvenc”); 

av_find_encoder_by_name(“hevc_nvenc”);


4. 辅助工具

watch -n 1 nvidia-smi 

以1秒钟为间隔来查看GPU资源占用情况


5. 实测结果


5.1 硬件性能

本人用Geforce GTX1070与Tesla P4进行了测试,两者都是Pascal架构。 

(1). GTX1070的硬件信息如下(deviceQuery显示):
CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 1 CUDA Capable device(s)
Device 0: "GeForce GTX 1070"
CUDA Driver Version / Runtime Version          8.0 / 8.0
CUDA Capability Major/Minor version number:    6.1
Total amount of global memory:                 8110 MBytes (8504279040 bytes)
(15) Multiprocessors, (128) CUDA Cores/MP:     1920 CUDA Cores
GPU Max Clock rate:                            1683 MHz (1.68 GHz)
Memory Clock rate:                             4004 Mhz
Memory Bus Width:                              256-bit
L2 Cache Size:                                 2097152 bytes
Maximum Texture Dimension Size (x,y,z)         1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
Maximum Layered 1D Texture Size, (num) layers  1D=(32768), 2048 layers
Maximum Layered 2D Texture Size, (num) layers  2D=(32768, 32768), 2048 layers
Total amount of constant memory:               65536 bytes
Total amount of shared memory per block:       49152 bytes
Total number of registers available per block: 65536
Warp size:                                     32
Maximum number of threads per multiprocessor:  2048
Maximum number of threads per block:           1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch:                          2147483647 bytes
Texture alignment:                             512 bytes
Concurrent copy and kernel execution:          Yes with 2 copy engine(s)
Run time limit on kernels:                     Yes
Integrated GPU sharing Host Memory:            No
Support host page-locked memory mapping:       Yes
Alignment requirement for Surfaces:            Yes
Device has ECC support:                        Disabled
Device supports Unified Addressing (UVA):      Yes
Device PCI Domain ID / Bus ID / location ID:   0 / 5 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 8.0, CUDA Runtime Version = 8.0, NumDevs = 1, Device0 = GeForce GTX 1070
Result = PASS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

(2). P4的硬件信息如下:
CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 1 CUDA Capable device(s)
Device 0: "Tesla P4"
CUDA Driver Version / Runtime Version          8.0 / 8.0
CUDA Capability Major/Minor version number:    6.1
Total amount of global memory:                 7606 MBytes (7975862272 bytes)
(20) Multiprocessors, (128) CUDA Cores/MP:     2560 CUDA Cores
GPU Max Clock rate:                            1114 MHz (1.11 GHz)
Memory Clock rate:                             3003 Mhz
Memory Bus Width:                              256-bit
L2 Cache Size:                                 2097152 bytes
Maximum Texture Dimension Size (x,y,z)         1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
Maximum Layered 1D Texture Size, (num) layers  1D=(32768), 2048 layers
Maximum Layered 2D Texture Size, (num) layers  2D=(32768, 32768), 2048 layers
Total amount of constant memory:               65536 bytes
Total amount of shared memory per block:       49152 bytes
Total number of registers available per block: 65536
Warp size:                                     32
Maximum number of threads per multiprocessor:  2048
Maximum number of threads per block:           1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch:                          2147483647 bytes
Texture alignment:                             512 bytes
Concurrent copy and kernel execution:          Yes with 2 copy engine(s)
Run time limit on kernels:                     Yes
Integrated GPU sharing Host Memory:            No
Support host page-locked memory mapping:       Yes
Alignment requirement for Surfaces:            Yes
Device has ECC support:                        Enabled
Device supports Unified Addressing (UVA):      Yes
Device PCI Domain ID / Bus ID / location ID:   0 / 5 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 8.0, CUDA Runtime Version = 8.0, NumDevs = 1, Device0 = Tesla P4
Result = PASS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36


5.2 实验结果

(1). GTX1070 

| | hevc编码 | h264编码 | h264转h265 | h265转h264 | 

| 60fps | 387fps(6.45x) | 430fps(7.17x) | 348fps(5.79x) | 170fps(2.84x) | 

| 30fps | 345fps(11.5x) | 429fps(14.3x) | 318fps(10.6x) | 94fps(3.13x) | 

(2). P4

| | hevc编码 | h264编码 | h264转h265 | h265转h264 | 

| 60fps | 235fps(3.91x) | 334fps(5.57x) | 217fps(3.63x) | 171fps(2.85x) | 

| 30fps | 212fps(7.07x) | 322fps(10.7x) | 198fps(6.59x) | 94fps(3.14x) |


5.3 实验分析

虽然在硬件性能上,P4比GTX1070显存略少,主频略低,CUDA的数量多出了33%,但从实验结果上看除了h265->h264结果持平外,P4表现都要逊色于GTX1070,这和官网所言“编解码器独立于CUDA核”相一致。


6. 源码分析

集成在ffmpeg框架内的视频编解码器需要定义一个AVCodec结构体包含(私有结构体AVClass、三个函数等)


6.1 h264部分

(1). 结构体(nvenc_h264.c)
AVCodec ff_h264_nvenc_encoder = {
.name           = "h264_nvenc",
.long_name      = NULL_IF_CONFIG_SMALL("NVIDIA NVENC H.264 encoder"),
.type           = AVMEDIA_TYPE_VIDEO,
.id             = AV_CODEC_ID_H264,
.init           = ff_nvenc_encode_init, //初始化函数
.encode2        = ff_nvenc_encode_frame, //编码函数
.close          = ff_nvenc_encode_close, //关闭函数
.priv_data_size = sizeof(NvencContext),  //内部数据结构,见nvenc.h
.priv_class     = &h264_nvenc_class,     //私有结构体
.defaults       = defaults,
.capabilities   = AV_CODEC_CAP_DELAY,
.caps_internal  = FF_CODEC_CAP_INIT_CLEANUP,
.pix_fmts       = ff_nvenc_pix_fmts,
};

static const AVClass h264_nvenc_class = {
.class_name = "h264_nvenc",
.item_name = av_default_item_name,
.option = options, //编码器选项参数在这个AVOption结构体中
.version = LIBAVUTIL_VERSION_INT,
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

注意还有两个AVCodec,一个名字叫nvenc、一个叫nvenc_h264,对应三大函数与h264_nvenc是一样的 

(2). 处理函数(nvenc.c)
av_cold int ff_nvenc_encode_init(AVCodecContext *avctx)
{
NvencContext *ctx = avctx->priv_data; //读入私有结构体
...
//下面是一些nvenc的api
nvenc_load_libraries
nvenc_setup_device
nvenc_setup_encoder
nvenc_setup_surfaces
nvenc_setup_extradata
...
}
int ff_nvenc_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
const AVFrame *frame, int *got_packet)
{
...
if (frame) {
inSurf = get_free_frame(ctx); //来一帧
...
res = nvenc_upload_frame(avctx, frame, inSurf);//编一帧
...
}
}
av_cold int ff_nvenc_encode_close(AVCodecContext *avctx)
{
...
//一些free和destroy的工作
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28


6.2 h265部分

(1). 结构体(nvenc_hevc.c)
AVCodec ff_hevc_nvenc_encoder = {
.name           = "hevc_nvenc",
.long_name      = NULL_IF_CONFIG_SMALL("NVIDIA NVENC hevc encoder"),
.type           = AVMEDIA_TYPE_VIDEO,
.id             = AV_CODEC_ID_HEVC,
.init           = ff_nvenc_encode_init, //初始化函数
.encode2        = ff_nvenc_encode_frame, //编码函数
.close          = ff_nvenc_encode_close, //关闭函数
.priv_data_size = sizeof(NvencContext),  //内部数据结构,见nvenc.h
.priv_class     = &hevc_nvenc_class, //私有结构体
.defaults       = defaults,
.pix_fmts       = ff_nvenc_pix_fmts,
.capabilities   = AV_CODEC_CAP_DELAY,
.caps_internal  = FF_CODEC_CAP_INIT_CLEANUP,
};

static const AVClass hevc_nvenc_class = {
.class_name = "hevc_nvenc",
.item_name = av_default_item_name,
.option = options,//编码器选项参数在这个AVOption结构体中
.version = LIBAVUTIL_VERSION_INT,
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

注意还有一个AVCodec,一个叫nvenc_hevc,对应三大函数与h264_nvenc是一样的 

(2) 处理函数(nvenc.c) 

同h264的处理函数
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: