您的位置:首页 > 其它

机器学习实战精读--------logistic回归

2017-08-21 22:48 369 查看
Logistic回归的主要目的:寻找一个非线性函数sigmod最佳的拟合参数
拟合、插值和逼近是数值分析的三大工具
回归:对一直公式的位置参数进行估计
拟合:把平面上的一些系列点,用一条光滑曲线连接起来
logistic主要思想:根据现有数据对分类边界线建立回归公式、以此进行分类
sigmoid函数:在神经网络中它是所谓的激励函数。当输入大于0时,输出趋向于1,输入小于0时,输出趋向0,输入为0时,输出为0.5




梯度上升:要找到某个函数的最大值,最好的方法是沿着该函数的梯度方向探寻
收敛:随着迭代的运行算法的结果和真实结果的误差越来越小,且趋向于一个固定值。
爬山算法:是完完全全的贪心算法,每次鼠目寸光的选择一个当前最优解,英雌只能搜寻到局部最优值
模拟退火算法:也是一种贪心算法但它的sou索过程引入了随机因素,模拟退火算法以一定的概念来接受一个比当前解要差的解,因此有可能会跳出这个局部最优解,达到全局最优解。
处理数据中的缺失值
使用可用特征的均值来填补缺失值
使用特殊值来填补缺失值,如-1
忽略有缺失值的样本
使用相似样本的均值添补缺失值
使用其它机器学习算法预测缺失值
标签与特征不同,很难确定采用某个合适的值来替换。
#coding:utf-8

from numpy import *
import math

def loadDataSet():
dataMat = []; labelMat = []
fr = open('testSet.txt')
for line in fr.readlines():
lineArr = line.strip().split()
dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
labelMat.append(int(lineArr[2]))
return dataMat,labelMat

def sigmoid(inX):
return longfloat(1.0/(1+exp(-inX))) #sigmoid函数公式

def gradAscent(dataMatIn, classLabels):
#dataMatIn 一个2维的数组;classLabels 类别标签
dataMatrix = mat(dataMatIn)             #转换为矩阵
labelMat = mat(classLabels).transpose() #得到矩阵的转置矩阵
m,n = shape(dataMatrix)	 #读取矩阵的长度,二维矩阵,返回两个值
alpha = 0.001          #向目标移动的步长
maxCycles = 500        #迭代次数
weights = ones((n,1))   #ones()函数用以创建指定形状和类型的数组,默认情况下返回的类型是float64。但是,如果使用ones()函数时指定了数据类型,那么返回的就是该类型
for k in range(maxCycles):
h = sigmoid(dataMatrix*weights)     #matrix mult
error = (labelMat - h)              #vector subtraction
weights = weights + alpha * dataMatrix.transpose()* error #matrix mult
return weights

def plotBestFit(weights):
import matplotlib as mpl
mpl.use('Agg')                 #为了防止出现:RuntimeError: could not open display报错
import matplotlib.pyplot as plt
dataMat,labelMat=loadDataSet()
dataArr = array(dataMat)
n = shape(dataArr)[0]
xcord1 = []; ycord1 = []
xcord2 = []; ycord2 = []
for i in range(n):
if int(labelMat[i])== 1:
xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2])
else:
xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2])
fig = plt.figure() #figure: 控制dpi、边界颜色、图形大小、和子区( subplot)设置
ax = fig.add_subplot(111)  # 参数111的意思是:将画布分割成1行1列,图像画在从左到右从上到下的第1块,
ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
ax.scatter(xcord2, ycord2, s=30, c='green')
x = arange(-3.0, 3.0, 0.1)
y = (-weights[0]-weights[1]*x)/weights[2]
ax.plot(x, y)
plt.xlabel('X1'); plt.ylabel('X2');
plt.savefig('plotBestFit.png')   #因为我是腾讯云服务器,没有图形界面,所以我保存为图片。

#随机梯度上升算法
def stocGradAscent0(dataMatrix, classLabels):
m,n = shape(dataMatrix)
alpha = 0.01
weights = ones(n)   #initialize to all ones
for i in range(m):
h = sigmoid(sum(dataMatrix[i]*weights))
error = classLabels[i] - h
weights = weights + alpha * error * dataMatrix[i]  #回归系数的更新操作
return weights

#改进的随机梯度上升算法
def stocGradAscent1(dataMatrix, classLabels, numIter=150):    #较之前的增加了一个迭代次数作为第三个参数,默认值150
m,n = shape(dataMatrix)
weights = ones(n)
for j in range(numIter):
dataIndex = range(m)
for i in range(m):
alpha = 4/(1.0+j+i)+0.0001
randIndex = int(random.uniform(0,len(dataIndex)))   #样本随机选择
h = sigmoid(sum(dataMatrix[randIndex]*weights))
error = classLabels[randIndex] - h
weights = weights + alpha * error * dataMatrix[randIndex]  #回归系数的更新操作
del(dataIndex[randIndex])
return weights

#以回归系数和特征向量作为输入计算对应的sigmoid值
def classifyVector(inX, weights):
prob = sigmoid(sum(inX*weights))
if prob > 0.5: return 1.0               #如果sigmoid值大于0.5函数返回1,否则返回0
else: return 0.0

#打开测试集和训练集,并对数据进行格式化处理的函数
def colicTest():
frTrain = open('horseColicTraining.txt'); frTest = open('horseColicTest.txt')
trainingSet = []; trainingLabels = []
for line in frTrain.readlines():
currLine = line.strip().split('\t')
lineArr =[]
for i in range(21):
lineArr.append(float(currLine[i]))
trainingSet.append(lineArr)
trainingLabels.append(float(currLine[21]))
trainWeights = stocGradAscent1(array(trainingSet), trainingLabels, 1000)  #计算回归系数向量
errorCount = 0; numTestVec = 0.0
for line in frTest.readlines():
numTestVec += 1.0
currLine = line.strip().split('\t')
lineArr =[]
for i in range(21):
lineArr.append(float(currLine[i]))
if int(classifyVector(array(lineArr), trainWeights))!= int(currLine[21]):
errorCount += 1
errorRate = (float(errorCount)/numTestVec)
print "the error rate of this test is: %f" % errorRate
return errorRate
#调用函数colicTest()10次,并求结果的平均值
def multiTest():
numTests = 10; errorSum=0.0
for k in range(numTests):
errorSum += colicTest()
print "after %d iterations the average error rate is: %f" % (numTests, errorSum/float(numTests))





内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签:  logistic 回归算法