您的位置:首页 > 产品设计 > UI/UE

AbstractQueuedSynchronizer 源码分析(共享锁)

2017-06-28 00:00 776 查看
摘要: Java concurrent包的灵魂抽象类,很多我们常用的Lock实现内部都是代理给AbstractQueuedSynchronizer来实现锁的获取与释放的。本文记录一下看源码的过程。

源码看之前的问题

race condition如何避免?

工作流程是怎么样的?

使用什么方式实现的?

使用到的其他类说明和资料

LockSupport 简要说明

在AbstractQueuedSynchronizer中使用LockSupport类来实现线程的挂起和唤醒,对应方法分别我park和unpark,内部实现原理是代理给了unsafe包的park和unpark

为何使用park和unpark

Thread中提供了suspend和resume两个方法,不过这两个方法有很重大的缺陷,就是在suspend之前调用了resume,resume操作时没有任何作用的,线程会一直挂起再也得不到运行,目前这两个方法已经不建议使用。

park会阻塞线程直到unpark调用,但unpark操作不依赖于park,在调用park之前调用了unpark对线程一样有效(park之前检查unpark状态应该是),而且多次调用unpark只对后面的一次park起作用。由于前面遗留的unpark操作影响,调用park后可能会立即返回。不过下一次park又会继续阻塞等待unpark。

其次park还支持超时,获取锁时的超时策略就依赖于它。

Unsafe类相关说明

在多线程环境下对一个值进行操作时需要保证原子性,lock类使用了Unsafe类中的compareAndSet等CAS方法来保证操作的原子性,在不成功的情况下会自旋重试
Unsafe类是sun.misc包下的类,由于其安全策略,应用程序中写的类是无法使用这个类的,而且其中实现大部分都是native的,了解一下API功能,不影响阅读jdk源码就可以了

Doug Lea大神的paper

地址:http://gee.cs.oswego.edu/dl/papers/aqs.pdf
详细讲述了aqs的设计过程,上面的park与unpark就翻译自里面的一段。

AbstractQueuedSynchronizer 源码解析

ps:condition相关的先不涉及,单纯的看lock相关源码

ps2:单独看AQS很抽象,我们结合具体类来了解相关功能

ps3:要用多线程的思维去看,单线程思维看这个根本就看不明白

重要的属性字段

state
标识当前锁的状态,源码实现中一般标识锁数量,像在CountDownLatch中state标识latch的count,每当有线程countDown时,state就减一,ReentrantLock标识锁的重入次数,进入+1,释放-1

head,tail
队列的头尾,下面会说明下队列

内部类Node

AbstractQueuedSynchronizer维护了一个FIFO的队列,每个队列节点就是一个Node,Node中维护了前后节点(pre,next)的信息,和每个节点的waitStatus以及节点的模式(共享还是独占),在获取锁失败后就会加入到队列末尾,拥有锁的线程释放锁后会通知队列中的第一个节点。

waitStatus有几个状态和约定

说明
>0无效状态,说明node不再竞争锁
<0有效状态,node正在竞争锁
1CANCELLED,被取消
0初始化状态,表示SYNC
-1SIGNAL 表示后继节点需要被唤醒
-2CONDITION 表示线程在等待condition
-3PROPAGATE 表示下一次acquireShared应该被无条件传播
mode:

说明
SHARED共享模式
EXCLUSIVE独占模式

CountDownLatch 对AQS的使用

我们从最简单的CountDownLatch来看一下AQS的共享模式的使用

demo以及CountDownLatch相关API

jdk中的demo

class Driver2 { // ...
void main() throws InterruptedException {
CountDownLatch doneSignal = new CountDownLatch(N);
Executor e = ...

for (int i = 0; i < N; ++i) // create and start threads
e.execute(new WorkerRunnable(doneSignal, i));

doneSignal.await();           // wait for all to finish
}
}

class WorkerRunnable implements Runnable {
private final CountDownLatch doneSignal;
private final int i;
WorkerRunnable(CountDownLatch doneSignal, int i) {
this.doneSignal = doneSignal;
this.i = i;
}
public void run() {
try {
doWork(i);
doneSignal.countDown();
} catch (InterruptedException ex) {} // return;
}

void doWork() { ... }
}

main函数生成了N个任务放到线程池中异步执行,每个任务执行完毕后会countdown一下表明任务完成,主线程一直await到所有的任务执行完毕才会退出

内部类Sync继承了AQS,重载了share相关的两个方法

private static final class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = 4982264981922014374L;

Sync(int count) {
setState(count);
}

int getCount() {
return getState();
}
/**
* 返回值>=0 表示获取锁成功,
* >0 表示需要向后传播 =0不向后传播
* <0 表示获取锁失败
*/
protected int tryAcquireShared(int acquires) {
return (getState() == 0) ? 1 : -1;
}

protected boolean tryReleaseShared(int releases) {
// Decrement count; signal when transition to zero
for (;;) {
int c = getState();
if (c == 0)
return false;
int nextc = c-1;
if (compareAndSetState(c, nextc))
return nextc == 0;
}
}
}


tryAcquireShared 当前状态等于0,获取成功,即所有线程准备完毕

tryReleaseShared 释放锁时将state减一,里面用到了CAS来保证操作的原子性

CountDownLatch相关方法:

public void await() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
}
public void countDown() {
sync.releaseShared(1);
}
public boolean await(long timeout, TimeUnit unit)
throws InterruptedException {
return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout));
}

全部都代理给了Sync类

countDown使用的releaseShared方法

countDown使用的releaseShared方法比较简单,先来看一下

public final boolean releaseShared(int arg) {
if (tryReleaseShared(arg)) {    //1
doReleaseShared();
return true;
}
return false;
}
private void doReleaseShared() {
/*
* Ensure that a release propagates, even if there are other
* in-progress acquires/releases.  This proceeds in the usual
* way of trying to unparkSuccessor of head if it needs
* signal. But if it does not, status is set to PROPAGATE to
* ensure that upon release, propagation continues.
* Additionally, we must loop in case a new node is added
* while we are doing this. Also, unlike other uses of
* unparkSuccessor, we need to know if CAS to reset status
* fails, if so rechecking.
*/
for (;;) {
Node h = head;
if (h != null && h != tail) {
int ws = h.waitStatus;
if (ws == Node.SIGNAL) {
if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))   //2
continue;            // loop to recheck cases
unparkSuccessor(h);
}
else if (ws == 0 &&
!compareAndSetWaitStatus(h, 0, Node.PROPAGATE))   //3
continue;                // loop on failed CAS
}
if (h == head)                   // loop if head changed   //4
break;
}
}


尝试释放共享锁,上面介绍了,就是state-1,成功后执行后续操作

获取队列head,当waitStatus为SIGNAL,就将其设置为0,设置成功后唤醒后继节点,不成功继续自旋尝试

head状态为0,将自身状态设置为propagate,这里ws为0,在后面可以看到其实是因为没有后续节点

如果在此过程中head改变了,就再次循环检查。后面我们会看到在线程获取到了锁之后,也还会调用这个方法来通知后继节点,这样前驱通知后继,扩散到了整个队列中,使所有节点都接收到了唤醒通知

await使用的acquireSharedInterruptibly方法

再来看一下await中的acquireSharedInterruptibly实现

public final void acquireSharedInterruptibly(int arg)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
if (tryAcquireShared(arg) < 0)               // 1
doAcquireSharedInterruptibly(arg);
}
private void doAcquireSharedInterruptibly(int arg)
throws InterruptedException {
final Node node = addWaiter(Node.SHARED);     // 2
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();  // 3
if (p == head) {
int r = tryAcquireShared(arg);
if (r >= 0) {
setHeadAndPropagate(node, r);
p.next = null; // help GC
failed = false;
return;
}
}
if (shouldParkAfterFailedAcquire(p, node) &&   // 4
parkAndCheckInterrupt())                   //5
throw new InterruptedException();
}
} finally {
if (failed)                          // 6
cancelAcquire(node);
}
}


尝试获取锁,获取成功直接返回,获取不成功进入doAcquireSharedInterruptibly

将当前线程封装成node加入到队列中

获得node的前驱节点,如果前驱节点为head节点,那么再次尝试获取锁,获取成功后将node设置为head节点,并向后传播

在获取失败后检查状态是否需要挂起,如果是,就挂起并在唤醒后检查中断状态(唤醒后线程是从挂起的位置继续往下执行)

失败将当前node置为取消,失败从代码看只有一种情况,就是被中断后抛出异常

分步骤说明,不按上述顺序,见标号:
2. 加入到队列中addWaiter方法

private Node addWaiter(Node mode) {
Node node = new Node(Thread.currentThread(), mode);
// Try the fast path of enq; backup to full enq on failure
Node pred = tail;
if (pred != null) {
node.prev = pred;
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
enq(node);
return node;
}
private Node enq(final Node node) {
for (;;) {
Node t = tail;
if (t == null) { // Must initialize
if (compareAndSetHead(new Node()))
tail = head;
} else {
node.prev = t;
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}
}
}
}

先自己尝试一下加入队列,如果失败就进入enq方法入队,可以看到,队列初始化时放置了一个空节点作为头部,线程封装的node加入到了其后

然后我们先看一下shouldParkAfterFailedAcquire,因为这个节点会改变waitStatus,对后面的propagate会有影响

private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
int ws = pred.waitStatus;
if (ws == Node.SIGNAL)      //1
/*
* This node has already set status asking a release
* to signal it, so it can safely park.
*/
return true;
if (ws > 0) {              //2
/*
* Predecessor was cancelled. Skip over predecessors and
* indicate retry.
*/
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {                   //3
/*
* waitStatus must be 0 or PROPAGATE.  Indicate that we
* need a signal, but don't park yet.  Caller will need to
* retry to make sure it cannot acquire before parking.
*/
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
return false;
}

分三步

前驱节点waitStatus为SIGNAL直接返回true,表示可以挂起

waitStatus大于0表示前驱节点已经被取消或其他无效状态,将其清理出队列,然后返回false,doAcquireSharedInterruptibly会自旋一次

这个else里waitStatus要么是初始化时的0,要么就是被其他线程设置成了propagate,将waitStatus设置为SIGNAL,然后返回false,doAcquireSharedInterruptibly会自旋一次

可以看到每当有一个新线程进入等待队列时,都会把前一个节点的waitStatus变为SIGNAL,表示后继节点需要被通知唤醒,新入队的节点waitStatus为SYNC

head

head(-1)->node1(0)

head(-1)->node1(-1)->node2(0)

将获取到锁的节点设置为head,并向后传播setHeadAndPropagate

private void setHeadAndPropagate(Node node, int propagate) {
Node h = head; // Record old head for check below
setHead(node);
/*
* Try to signal next queued node if:
*   Propagation was indicated by caller,
*     or was recorded (as h.waitStatus either before
*     or after setHead) by a previous operation
*     (note: this uses sign-check of waitStatus because
*      PROPAGATE status may transition to SIGNAL.)
* and
*   The next node is waiting in shared mode,
*     or we don't know, because it appears null
*
* The conservatism in both of these checks may cause
* unnecessary wake-ups, but only when there are multiple
* racing acquires/releases, so most need signals now or soon
* anyway.
*/
if (propagate > 0 || h == null || h.waitStatus < 0 ||
(h = head) == null || h.waitStatus < 0) {
Node s = node.next;
if (s == null || s.isShared())
doReleaseShared();
}
}
//头结点对应的线程已经获得了锁,
//相当于于出队,这个节点已经不再竞争锁了
//再竞争锁会再加入到队列中
private void setHead(Node node) {
head = node;
node.thread = null;
node.prev = null;
}

propagate(tryAcquireShared返回值) > 0 表示需要向后传播

h == null || h.waitStatus < 0 ||
(h = head) == null || h.waitStatus < 0 或头结点为空或状态为有效

通知后继节点doReleaseShared上面已经说过了。

我们分几种情况讨论一下

1 await直接获取到锁,也就是所有任务已经完成,那么直接返回,继续执行

2 任务没有完成,await获取锁失败,进入FIFO队列等待

2.1 任务完成后,调用doReleaseShared通知后继节点,将队列中的第一个node设置为head,并再次调用doReleaseShared

2.2 一直到队列末尾,所有节点获取到锁,通知完毕,所有线程获取到共享锁,继续执行
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签:  Java 并发 AQS