您的位置:首页 > 编程语言 > C语言/C++

综合运用: C++11 多线程下生产者消费者模型详解(转)

2017-06-12 15:29 423 查看
生产者消费者问题是多线程并发中一个非常经典的问题,相信学过操作系统课程的同学都清楚这个问题的根源。本文将就四种情况分析并介绍生产者和消费者问题,它们分别是:单生产者-单消费者模型,单生产者-多消费者模型,多生产者-单消费者模型,多生产者-多消费者模型,我会给出四种情况下的 C++11 并发解决方案,如果文中出现了错误或者你对代码有异议,欢迎交流 ;-)。

单生产者-单消费者模型

顾名思义,单生产者-单消费者模型中只有一个生产者和一个消费者,生产者不停地往产品库中放入产品,消费者则从产品库中取走产品,产品库容积有限制,只能容纳一定数目的产品,如果生产者生产产品的速度过快,则需要等待消费者取走产品之后,产品库不为空才能继续往产品库中放置新的产品,相反,如果消费者取走产品的速度过快,则可能面临产品库中没有产品可使用的情况,此时需要等待生产者放入一个产品后,消费者才能继续工作。C++11实现单生产者单消费者模型的代码如下:

1 #include <unistd.h>
2
3 #include <cstdlib>
4 #include <condition_variable>
5 #include <iostream>
6 #include <mutex>
7 #include <thread>
8
9 static const int kItemRepositorySize  = 10; // Item buffer size.
10 static const int kItemsToProduce  = 1000;   // How many items we plan to produce.
11
12 struct ItemRepository {
13     int item_buffer[kItemRepositorySize]; // 产品缓冲区, 配合 read_position 和 write_position 模型环形队列.
14     size_t read_position; // 消费者读取产品位置.
15     size_t write_position; // 生产者写入产品位置.
16     std::mutex mtx; // 互斥量,保护产品缓冲区
17     std::condition_variable repo_not_full; // 条件变量, 指示产品缓冲区不为满.
18     std::condition_variable repo_not_empty; // 条件变量, 指示产品缓冲区不为空.
19 } gItemRepository; // 产品库全局变量, 生产者和消费者操作该变量.
20
21 typedef struct ItemRepository ItemRepository;
22
23
24 void ProduceItem(ItemRepository *ir, int item)
25 {
26     std::unique_lock<std::mutex> lock(ir->mtx);
27     while(((ir->write_position + 1) % kItemRepositorySize)
28         == ir->read_position) { // item buffer is full, just wait here.
29         std::cout << "Producer is waiting for an empty slot...\n";
30         (ir->repo_not_full).wait(lock); // 生产者等待"产品库缓冲区不为满"这一条件发生.
31     }
32
33     (ir->item_buffer)[ir->write_position] = item; // 写入产品.
34     (ir->write_position)++; // 写入位置后移.
35
36     if (ir->write_position == kItemRepositorySize) // 写入位置若是在队列最后则重新设置为初始位置.
37         ir->write_position = 0;
38
39     (ir->repo_not_empty).notify_all(); // 通知消费者产品库不为空.
40     lock.unlock(); // 解锁.
41 }
42
43 int ConsumeItem(ItemRepository *ir)
44 {
45     int data;
46     std::unique_lock<std::mutex> lock(ir->mtx);
47     // item buffer is empty, just wait here.
48     while(ir->write_position == ir->read_position) {
49         std::cout << "Consumer is waiting for items...\n";
50         (ir->repo_not_empty).wait(lock); // 消费者等待"产品库缓冲区不为空"这一条件发生.
51     }
52
53     data = (ir->item_buffer)[ir->read_position]; // 读取某一产品
54     (ir->read_position)++; // 读取位置后移
55
56     if (ir->read_position >= kItemRepositorySize) // 读取位置若移到最后,则重新置位.
57         ir->read_position = 0;
58
59     (ir->repo_not_full).notify_all(); // 通知消费者产品库不为满.
60     lock.unlock(); // 解锁.
61
62     return data; // 返回产品.
63 }
64
65
66 void ProducerTask() // 生产者任务
67 {
68     for (int i = 1; i <= kItemsToProduce; ++i) {
69         // sleep(1);
70         std::cout << "Produce the " << i << "^th item..." << std::endl;
71         ProduceItem(&gItemRepository, i); // 循环生产 kItemsToProduce 个产品.
72     }
73 }
74
75 void ConsumerTask() // 消费者任务
76 {
77     static int cnt = 0;
78     while(1) {
79         sleep(1);
80         int item = ConsumeItem(&gItemRepository); // 消费一个产品.
81         std::cout << "Consume the " << item << "^th item" << std::endl;
82         if (++cnt == kItemsToProduce) break; // 如果产品消费个数为 kItemsToProduce, 则退出.
83     }
84 }
85
86 void InitItemRepository(ItemRepository *ir)
87 {
88     ir->write_position = 0; // 初始化产品写入位置.
89     ir->read_position = 0; // 初始化产品读取位置.
90 }
91
92 int main()
93 {
94     InitItemRepository(&gItemRepository);
95     std::thread producer(ProducerTask); // 创建生产者线程.
96     std::thread consumer(ConsumerTask); // 创建消费之线程.
97     producer.join();
98     consumer.join();
99 }


单生产者-多消费者模型

与单生产者和单消费者模型不同的是,单生产者-多消费者模型中可以允许多个消费者同时从产品库中取走产品。所以除了保护产品库在多个读写线程下互斥之外,还需要维护消费者取走产品的计数器,代码如下:

1 #include <unistd.h>
2
3 #include <cstdlib>
4 #include <condition_variable>
5 #include <iostream>
6 #include <mutex>
7 #include <thread>
8
9 static const int kItemRepositorySize  = 4; // Item buffer size.
10 static const int kItemsToProduce  = 10;   // How many items we plan to produce.
11
12 struct ItemRepository {
13     int item_buffer[kItemRepositorySize];
14     size_t read_position;
15     size_t write_position;
16     size_t item_counter;
17     std::mutex mtx;
18     std::mutex item_counter_mtx;
19     std::condition_variable repo_not_full;
20     std::condition_variable repo_not_empty;
21 } gItemRepository;
22
23 typedef struct ItemRepository ItemRepository;
24
25
26 void ProduceItem(ItemRepository *ir, int item)
27 {
28     std::unique_lock<std::mutex> lock(ir->mtx);
29     while(((ir->write_position + 1) % kItemRepositorySize)
30         == ir->read_position) { // item buffer is full, just wait here.
31         std::cout << "Producer is waiting for an empty slot...\n";
32         (ir->repo_not_full).wait(lock);
33     }
34
35     (ir->item_buffer)[ir->write_position] = item;
36     (ir->write_position)++;
37
38     if (ir->write_position == kItemRepositorySize)
39         ir->write_position = 0;
40
41     (ir->repo_not_empty).notify_all();
42     lock.unlock();
43 }
44
45 int ConsumeItem(ItemRepository *ir)
46 {
47     int data;
48     std::unique_lock<std::mutex> lock(ir->mtx);
49     // item buffer is empty, just wait here.
50     while(ir->write_position == ir->read_position) {
51         std::cout << "Consumer is waiting for items...\n";
52         (ir->repo_not_empty).wait(lock);
53     }
54
55     data = (ir->item_buffer)[ir->read_position];
56     (ir->read_position)++;
57
58     if (ir->read_position >= kItemRepositorySize)
59         ir->read_position = 0;
60
61     (ir->repo_not_full).notify_all();
62     lock.unlock();
63
64     return data;
65 }
66
67
68 void ProducerTask()
69 {
70     for (int i = 1; i <= kItemsToProduce; ++i) {
71         // sleep(1);
72         std::cout << "Producer thread " << std::this_thread::get_id()
73             << " producing the " << i << "^th item..." << std::endl;
74         ProduceItem(&gItemRepository, i);
75     }
76     std::cout << "Producer thread " << std::this_thread::get_id()
77                 << " is exiting..." << std::endl;
78 }
79
80 void ConsumerTask()
81 {
82     bool ready_to_exit = false;
83     while(1) {
84         sleep(1);
85         std::unique_lock<std::mutex> lock(gItemRepository.item_counter_mtx);
86         if (gItemRepository.item_counter < kItemsToProduce) {
87             int item = ConsumeItem(&gItemRepository);
88             ++(gItemRepository.item_counter);
89             std::cout << "Consumer thread " << std::this_thread::get_id()
90                 << " is consuming the " << item << "^th item" << std::endl;
91         } else ready_to_exit = true;
92         lock.unlock();
93         if (ready_to_exit == true) break;
94     }
95     std::cout << "Consumer thread " << std::this_thread::get_id()
96                 << " is exiting..." << std::endl;
97 }
98
99 void InitItemRepository(ItemRepository *ir)
100 {
101     ir->write_position = 0;
102     ir->read_position = 0;
103     ir->item_counter = 0;
104 }
105
106 int main()
107 {
108     InitItemRepository(&gItemRepository);
109     std::thread producer(ProducerTask);
110     std::thread consumer1(ConsumerTask);
111     std::thread consumer2(ConsumerTask);
112     std::thread consumer3(ConsumerTask);
113     std::thread consumer4(ConsumerTask);
114
115     producer.join();
116     consumer1.join();
117     consumer2.join();
118     consumer3.join();
119     consumer4.join();
120 }


多生产者-单消费者模型

与单生产者和单消费者模型不同的是,多生产者-单消费者模型中可以允许多个生产者同时向产品库中放入产品。所以除了保护产品库在多个读写线程下互斥之外,还需要维护生产者放入产品的计数器,代码如下:

1 #include <unistd.h>
2
3 #include <cstdlib>
4 #include <condition_variable>
5 #include <iostream>
6 #include <mutex>
7 #include <thread>
8
9 static const int kItemRepositorySize  = 4; // Item buffer size.
10 static const int kItemsToProduce  = 10;   // How many items we plan to produce.
11
12 struct ItemRepository {
13     int item_buffer[kItemRepositorySize];
14     size_t read_position;
15     size_t write_position;
16     size_t item_counter;
17     std::mutex mtx;
18     std::mutex item_counter_mtx;
19     std::condition_variable repo_not_full;
20     std::condition_variable repo_not_empty;
21 } gItemRepository;
22
23 typedef struct ItemRepository ItemRepository;
24
25
26 void ProduceItem(ItemRepository *ir, int item)
27 {
28     std::unique_lock<std::mutex> lock(ir->mtx);
29     while(((ir->write_position + 1) % kItemRepositorySize)
30         == ir->read_position) { // item buffer is full, just wait here.
31         std::cout << "Producer is waiting for an empty slot...\n";
32         (ir->repo_not_full).wait(lock);
33     }
34
35     (ir->item_buffer)[ir->write_position] = item;
36     (ir->write_position)++;
37
38     if (ir->write_position == kItemRepositorySize)
39         ir->write_position = 0;
40
41     (ir->repo_not_empty).notify_all();
42     lock.unlock();
43 }
44
45 int ConsumeItem(ItemRepository *ir)
46 {
47     int data;
48     std::unique_lock<std::mutex> lock(ir->mtx);
49     // item buffer is empty, just wait here.
50     while(ir->write_position == ir->read_position) {
51         std::cout << "Consumer is waiting for items...\n";
52         (ir->repo_not_empty).wait(lock);
53     }
54
55     data = (ir->item_buffer)[ir->read_position];
56     (ir->read_position)++;
57
58     if (ir->read_position >= kItemRepositorySize)
59         ir->read_position = 0;
60
61     (ir->repo_not_full).notify_all();
62     lock.unlock();
63
64     return data;
65 }
66
67 void ProducerTask()
68 {
69     bool ready_to_exit = false;
70     while(1) {
71         sleep(1);
72         std::unique_lock<std::mutex> lock(gItemRepository.item_counter_mtx);
73         if (gItemRepository.item_counter < kItemsToProduce) {
74             ++(gItemRepository.item_counter);
75             ProduceItem(&gItemRepository, gItemRepository.item_counter);
76             std::cout << "Producer thread " << std::this_thread::get_id()
77                 << " is producing the " << gItemRepository.item_counter
78                 << "^th item" << std::endl;
79         } else ready_to_exit = true;
80         lock.unlock();
81         if (ready_to_exit == true) break;
82     }
83     std::cout << "Producer thread " << std::this_thread::get_id()
84                 << " is exiting..." << std::endl;
85 }
86
87 void ConsumerTask()
88 {
89     static int item_consumed = 0;
90     while(1) {
91         sleep(1);
92         ++item_consumed;
93         if (item_consumed <= kItemsToProduce) {
94             int item = ConsumeItem(&gItemRepository);
95             std::cout << "Consumer thread " << std::this_thread::get_id()
96                 << " is consuming the " << item << "^th item" << std::endl;
97         } else break;
98     }
99     std::cout << "Consumer thread " << std::this_thread::get_id()
100                 << " is exiting..." << std::endl;
101 }
102
103 void InitItemRepository(ItemRepository *ir)
104 {
105     ir->write_position = 0;
106     ir->read_position = 0;
107     ir->item_counter = 0;
108 }
109
110 int main()
111 {
112     InitItemRepository(&gItemRepository);
113     std::thread producer1(ProducerTask);
114     std::thread producer2(ProducerTask);
115     std::thread producer3(ProducerTask);
116     std::thread producer4(ProducerTask);
117     std::thread consumer(ConsumerTask);
118
119     producer1.join();
120     producer2.join();
121     producer3.join();
122     producer4.join();
123     consumer.join();
124 }


多生产者-多消费者模型

该模型可以说是前面两种模型的综合,程序需要维护两个计数器,分别是生产者已生产产品的数目和消费者已取走产品的数目。另外也需要保护产品库在多个生产者和多个消费者互斥地访问。

代码如下:

1 #include <unistd.h>
2
3 #include <cstdlib>
4 #include <condition_variable>
5 #include <iostream>
6 #include <mutex>
7 #include <thread>
8
9 static const int kItemRepositorySize  = 4; // Item buffer size.
10 static const int kItemsToProduce  = 10;   // How many items we plan to produce.
11
12 struct ItemRepository {
13     int item_buffer[kItemRepositorySize];
14     size_t read_position;
15     size_t write_position;
16     size_t produced_item_counter;
17     size_t consumed_item_counter;
18     std::mutex mtx;
19     std::mutex produced_item_counter_mtx;
20     std::mutex consumed_item_counter_mtx;
21     std::condition_variable repo_not_full;
22     std::condition_variable repo_not_empty;
23 } gItemRepository;
24
25 typedef struct ItemRepository ItemRepository;
26
27
28 void ProduceItem(ItemRepository *ir, int item)
29 {
30     std::unique_lock<std::mutex> lock(ir->mtx);
31     while(((ir->write_position + 1) % kItemRepositorySize)
32         == ir->read_position) { // item buffer is full, just wait here.
33         std::cout << "Producer is waiting for an empty slot...\n";
34         (ir->repo_not_full).wait(lock);
35     }
36
37     (ir->item_buffer)[ir->write_position] = item;
38     (ir->write_position)++;
39
40     if (ir->write_position == kItemRepositorySize)
41         ir->write_position = 0;
42
43     (ir->repo_not_empty).notify_all();
44     lock.unlock();
45 }
46
47 int ConsumeItem(ItemRepository *ir)
48 {
49     int data;
50     std::unique_lock<std::mutex> lock(ir->mtx);
51     // item buffer is empty, just wait here.
52     while(ir->write_position == ir->read_position) {
53         std::cout << "Consumer is waiting for items...\n";
54         (ir->repo_not_empty).wait(lock);
55     }
56
57     data = (ir->item_buffer)[ir->read_position];
58     (ir->read_position)++;
59
60     if (ir->read_position >= kItemRepositorySize)
61         ir->read_position = 0;
62
63     (ir->repo_not_full).notify_all();
64     lock.unlock();
65
66     return data;
67 }
68
69 void ProducerTask()
70 {
71     bool ready_to_exit = false;
72     while(1) {
73         sleep(1);
74         std::unique_lock<std::mutex> lock(gItemRepository.produced_item_counter_mtx);
75         if (gItemRepository.produced_item_counter < kItemsToProduce) {
76             ++(gItemRepository.produced_item_counter);
77             ProduceItem(&gItemRepository, gItemRepository.produced_item_counter);
78             std::cout << "Producer thread " << std::this_thread::get_id()
79                 << " is producing the " << gItemRepository.produced_item_counter
80                 << "^th item" << std::endl;
81         } else ready_to_exit = true;
82         lock.unlock();
83         if (ready_to_exit == true) break;
84     }
85     std::cout << "Producer thread " << std::this_thread::get_id()
86                 << " is exiting..." << std::endl;
87 }
88
89 void ConsumerTask()
90 {
91     bool ready_to_exit = false;
92     while(1) {
93         sleep(1);
94         std::unique_lock<std::mutex> lock(gItemRepository.consumed_item_counter_mtx);
95         if (gItemRepository.consumed_item_counter < kItemsToProduce) {
96             int item = ConsumeItem(&gItemRepository);
97             ++(gItemRepository.consumed_item_counter);
98             std::cout << "Consumer thread " << std::this_thread::get_id()
99                 << " is consuming the " << item << "^th item" << std::endl;
100         } else ready_to_exit = true;
101         lock.unlock();
102         if (ready_to_exit == true) break;
103     }
104     std::cout << "Consumer thread " << std::this_thread::get_id()
105                 << " is exiting..." << std::endl;
106 }
107
108 void InitItemRepository(ItemRepository *ir)
109 {
110     ir->write_position = 0;
111     ir->read_position = 0;
112     ir->produced_item_counter = 0;
113     ir->consumed_item_counter = 0;
114 }
115
116 int main()
117 {
118     InitItemRepository(&gItemRepository);
119     std::thread producer1(ProducerTask);
120     std::thread producer2(ProducerTask);
121     std::thread producer3(ProducerTask);
122     std::thread producer4(ProducerTask);
123
124     std::thread consumer1(ConsumerTask);
125     std::thread consumer2(ConsumerTask);
126     std::thread consumer3(ConsumerTask);
127     std::thread consumer4(ConsumerTask);
128
129     producer1.join();
130     producer2.join();
131     producer3.join();
132     producer4.join();
133
134     consumer1.join();
135     consumer2.join();
136     consumer3.join();
137     consumer4.join();
138 }


转自:http://www.cnblogs.com/haippy/p/3252092.html
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: