您的位置:首页 > 其它

十分钟搞定pandas

2017-05-20 14:23 211 查看
原文出处:
pandas.pydata.org 译文出处:石卓林
这是关于pandas的简短介绍,主要面向新用户。可以参阅Cookbook了解更复杂的使用方法。

习惯上,我们做以下导入

Python

In [1]: import pandas as pd
In [2]: import numpy as np
In [3]: import matplotlib.pyplot as plt

1
2
3

In
[1]:
import pandas
as pd

In [2]:
import numpy
as np
In
[3]:
import matplotlib.pyplot
as plt

创建对象

使用传递的值列表序列创建序列, 让pandas创建默认整数索引

Python

In [4]: s = pd.Series([1,3,5,np.nan,6,8])
In [5]: s
Out[5]:
0 1
1 3
2 5
3 NaN
4 6
5 8
dtype: float64

1
2
3
4
5
6
7
8
9
10

In
[4]:
s =
pd.Series([1,3,5,np.nan,6,8])

In [5]:
s
Out[5]:

0 1
1
3

2 5
3
NaN

4 6
5
8

dtype:
float64

使用传递的numpy数组创建数据帧,并使用日期索引和标记列.

Python

In [6]: dates = pd.date_range('20130101',periods=6)
In [7]: dates
Out[7]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2013-01-01, ..., 2013-01-06]
Length: 6, Freq: D, Timezone: None

In [8]: df = pd.DataFrame(np.random.randn(6,4),index=dates,columns=list('ABCD'))
In [9]: df
Out[9]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
2013-01-06 -0.673690 0.113648 -1.478427 0.524988

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

In
[6]:
dates =
pd.date_range('20130101',periods=6)

In [7]:
dates
Out[7]:

<class
'pandas.tseries.index.DatetimeIndex'>
[2013-01-01,
...,
2013-01-06]

Length:
6,
Freq:
D,
Timezone:
None

In [8]:
df =
pd.DataFrame(np.random.randn(6,4),index=dates,columns=list('ABCD'))
In
[9]:
df

Out[9]:

A B
C D

2013-01-01 0.469112
-0.282863
-1.509059
-1.135632
2013-01-02 1.212112
-0.173215 0.119209
-1.044236

2013-01-03
-0.861849
-2.104569
-0.494929 1.071804
2013-01-04 0.721555
-0.706771
-1.039575 0.271860

2013-01-05
-0.424972 0.567020 0.276232
-1.087401
2013-01-06
-0.673690 0.113648
-1.478427 0.524988

使用传递的可转换序列的字典对象创建数据帧.

Python

In [10]: df2 = pd.DataFrame({ 'A' : 1.,
....: 'B' : pd.Timestamp('20130102'),
....: 'C' : pd.Series(1,index=list(range(4)),dtype='float32'),
....: 'D' : np.array([3] * 4,dtype='int32'),
....: 'E' : pd.Categorical(["test","train","test","train"]),
....: 'F' : 'foo' })
....:
In [11]: df2
Out[11]:
A B C D E F
0 1 2013-01-02 1 3 test foo
1 1 2013-01-02 1 3 train foo
2 1 2013-01-02 1 3 test foo
3 1 2013-01-02 1 3 train foo

1
2
3
4
5
6
7
8
9
10
11
12
13
14

In
[10]:
df2 =
pd.DataFrame({
'A' :
1.,

....: 'B'
: pd.Timestamp('20130102'),

....: 'C'
: pd.Series(1,index=list(range(4)),dtype='float32'),

....: 'D'
: np.array([3]
* 4,dtype='int32'),

....: 'E'
: pd.Categorical(["test","train","test","train"]),

....: 'F'
: 'foo'
})

....:

In [11]:
df2
Out[11]:

A B C D E F
0 1
2013-01-02 1 3
test foo

1 1
2013-01-02 1 3 train foo
2 1
2013-01-02 1 3
test foo

3 1
2013-01-02 1 3 train foo

所有明确类型

Python

In [12]: df2.dtypes
Out[12]:
A float64
B datetime64[ns]
C float32
D int32
E category
F object
dtype: object

1
2
3
4
5
6
7
8
9

In
[12]:
df2.dtypes

Out[12]:

A
float64

B datetime64[ns]
C
float32

D int32
E category

F object
dtype:
object

如果你这个正在使用IPython,标签补全列名(以及公共属性)将自动启用。这里是将要完成的属性的子集:

Python

In [13]: df2.<TAB>
df2.A df2.boxplot
df2.abs df2.C
df2.add df2.clip
df2.add_prefix df2.clip_lower
df2.add_suffix df2.clip_upper
df2.align df2.columns
df2.all df2.combine
df2.any df2.combineAdd
df2.append df2.combine_first
df2.apply df2.combineMult
df2.applymap df2.compound
df2.as_blocks df2.consolidate
df2.asfreq df2.convert_objects
df2.as_matrix df2.copy
df2.astype df2.corr
df2.at df2.corrwith
df2.at_time df2.count
df2.axes df2.cov
df2.B df2.cummax
df2.between_time df2.cummin
df2.bfill df2.cumprod
df2.blocks df2.cumsum
df2.bool df2.D

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

In
[13]:
df2.<TAB>

df2.A df2.boxplot
df2.abs df2.C

df2.add df2.clip
df2.add_prefix
df2.clip_lower

df2.add_suffix
df2.clip_upper
df2.align df2.columns

df2.all df2.combine
df2.any df2.combineAdd

df2.append
df2.combine_first
df2.apply df2.combineMult

df2.applymap
df2.compound
df2.as_blocks df2.consolidate

df2.asfreq
df2.convert_objects
df2.as_matrix df2.copy

df2.astype
df2.corr
df2.at
df2.corrwith

df2.at_time df2.count
df2.axes
df2.cov

df2.B df2.cummax
df2.between_time
df2.cummin

df2.bfill df2.cumprod
df2.blocks
df2.cumsum

df2.bool
df2.D

如你所见, 列 A, B, C, 和
D
也是自动完成标签. E 也是可用的; 为了简便起见,后面的属性显示被截断.

查看数据

参阅基础部分

查看帧顶部和底部行

Python

In [14]: df.head()
Out[14]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401

In [15]: df.tail(3)
Out[15]:
A B C D
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
2013-01-06 -0.673690 0.113648 -1.478427 0.524988

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

In
[14]:
df.head()

Out[14]:

A B
C D

2013-01-01 0.469112
-0.282863
-1.509059
-1.135632
2013-01-02 1.212112
-0.173215 0.119209
-1.044236

2013-01-03
-0.861849
-2.104569
-0.494929 1.071804
2013-01-04 0.721555
-0.706771
-1.039575 0.271860

2013-01-05
-0.424972 0.567020 0.276232
-1.087401

In [15]:
df.tail(3)
Out[15]:

A
B C
D
2013-01-04 0.721555
-0.706771
-1.039575 0.271860

2013-01-05
-0.424972 0.567020 0.276232
-1.087401
2013-01-06
-0.673690 0.113648
-1.478427 0.524988

显示索引,列,和底层numpy数据

Python

In [16]: df.index
Out[16]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2013-01-01, ..., 2013-01-06]
Length: 6, Freq: D, Timezone: None

In [17]: df.columns
Out[17]: Index([u'A', u'B', u'C', u'D'], dtype='object')

In [18]: df.values
Out[18]:
array([[ 0.4691, -0.2829, -1.5091, -1.1356],
[ 1.2121, -0.1732, 0.1192, -1.0442],
[-0.8618, -2.1046, -0.4949, 1.0718],
[ 0.7216, -0.7068, -1.0396, 0.2719],
[-0.425 , 0.567 , 0.2762, -1.0874],
[-0.6737, 0.1136, -1.4784, 0.525 ]])

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

In
[16]:
df.index

Out[16]:

<class
'pandas.tseries.index.DatetimeIndex'>

[2013-01-01,
...,
2013-01-06]
Length:
6,
Freq:
D,
Timezone:
None

In
[17]:
df.columns

Out[17]:
Index([u'A',
u'B',
u'C',
u'D'],
dtype='object')

In [18]:
df.values
Out[18]:

array([[
0.4691,
-0.2829,
-1.5091,
-1.1356],

[ 1.2121,
-0.1732, 0.1192,
-1.0442],

[-0.8618,
-2.1046,
-0.4949, 1.0718],

[ 0.7216,
-0.7068,
-1.0396, 0.2719],

[-0.425
, 0.567
, 0.2762,
-1.0874],

[-0.6737, 0.1136,
-1.4784, 0.525
]])

描述显示数据快速统计摘要

Python

In [19]: df.describe()
Out[19]:
A B C D
count 6.000000 6.000000 6.000000 6.000000
mean 0.073711 -0.431125 -0.687758 -0.233103
std 0.843157 0.922818 0.779887 0.973118
min -0.861849 -2.104569 -1.509059 -1.135632
25% -0.611510 -0.600794 -1.368714 -1.076610
50% 0.022070 -0.228039 -0.767252 -0.386188
75% 0.658444 0.041933 -0.034326 0.461706
max 1.212112 0.567020 0.276232 1.071804

1
2
3
4
5
6
7
8
9
10
11

In
[19]:
df.describe()

Out[19]:

A
B C
D

count 6.000000 6.000000 6.000000 6.000000
mean
0.073711 -0.431125
-0.687758
-0.233103

std 0.843157 0.922818 0.779887 0.973118
min
-0.861849
-2.104569
-1.509059
-1.135632

25%
-0.611510
-0.600794
-1.368714
-1.076610
50% 0.022070
-0.228039
-0.767252
-0.386188

75% 0.658444 0.041933
-0.034326 0.461706
max 1.212112 0.567020 0.276232 1.071804

转置数据

Python

In [20]: df.T
Out[20]:
2013-01-01 2013-01-02 2013-01-03 2013-01-04 2013-01-05 2013-01-06
A 0.469112 1.212112 -0.861849 0.721555 -0.424972 -0.673690
B -0.282863 -0.173215 -2.104569 -0.706771 0.567020 0.113648
C -1.509059 0.119209 -0.494929 -1.039575 0.276232 -1.478427
D -1.135632 -1.044236 1.071804 0.271860 -1.087401 0.524988

1
2
3
4
5
6
7

In
[20]:
df.T

Out[20]:

2013-01-01 2013-01-02 2013-01-03 2013-01-04 2013-01-05 2013-01-06

A 0.469112 1.212112
-0.861849 0.721555
-0.424972
-0.673690
B
-0.282863
-0.173215
-2.104569
-0.706771 0.567020 0.113648

C -1.509059 0.119209
-0.494929
-1.039575 0.276232
-1.478427
D
-1.135632
-1.044236 1.071804 0.271860
-1.087401 0.524988

按轴排序

Python

In [21]: df.sort_index(axis=1, ascending=False)
Out[21]:
D C B A
2013-01-01 -1.135632 -1.509059 -0.282863 0.469112
2013-01-02 -1.044236 0.119209 -0.173215 1.212112
2013-01-03 1.071804 -0.494929 -2.104569 -0.861849
2013-01-04 0.271860 -1.039575 -0.706771 0.721555
2013-01-05 -1.087401 0.276232 0.567020 -0.424972
2013-01-06 0.524988 -1.478427 0.113648 -0.673690

1
2
3
4
5
6
7
8
9

In
[21]:
df.sort_index(axis=1,
ascending=False)

Out[21]:

D C
B A

2013-01-01
-1.135632
-1.509059
-0.282863 0.469112
2013-01-02
-1.044236 0.119209
-0.173215 1.212112

2013-01-03 1.071804
-0.494929
-2.104569
-0.861849
2013-01-04 0.271860
-1.039575
-0.706771 0.721555

2013-01-05
-1.087401 0.276232 0.567020
-0.424972
2013-01-06 0.524988
-1.478427 0.113648
-0.673690

按值排序

Python

In [22]: df.sort(columns='B')
Out[22]:
A B C D
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-06 -0.673690 0.113648 -1.478427 0.524988
2013-01-05 -0.424972 0.567020 0.276232 -1.087401

1
2
3
4
5
6
7
8
9

In
[22]:
df.sort(columns='B')

Out[22]:

A B
C D

2013-01-03
-0.861849
-2.104569
-0.494929 1.071804
2013-01-04 0.721555
-0.706771
-1.039575 0.271860

2013-01-01 0.469112
-0.282863
-1.509059
-1.135632
2013-01-02 1.212112
-0.173215 0.119209
-1.044236

2013-01-06
-0.673690 0.113648
-1.478427 0.524988
2013-01-05
-0.424972 0.567020 0.276232
-1.087401

选择器

注释: 标准Python / Numpy表达式可以完成这些互动工作, 但在生产代码中, 我们推荐使用优化的pandas数据访问方法, .at, .iat, .loc, .iloc 和 .ix.

参阅索引文档
索引和选择数据 and
多索引/高级索引

读取

选择单列, 这会产生一个序列, 等价df.A

Python

In [23]: df['A']
Out[23]:
2013-01-01 0.469112
2013-01-02 1.212112
2013-01-03 -0.861849
2013-01-04 0.721555
2013-01-05 -0.424972
2013-01-06 -0.673690
Freq: D, Name: A, dtype: float64

1
2
3
4
5
6
7
8
9

In
[23]:
df['A']

Out[23]:

2013-01-01 0.469112

2013-01-02 1.212112
2013-01-03
-0.861849

2013-01-04 0.721555
2013-01-05
-0.424972

2013-01-06
-0.673690
Freq:
D,
Name:
A,
dtype:
float64

使用[]选择行片断

Python

In [24]: df[0:3]
Out[24]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804

In [25]: df['20130102':'20130104']
Out[25]:
A B C D
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860

1
2
3
4
5
6
7
8
9
10
11
12
13

In
[24]:
df[0:3]

Out[24]:

A B
C D

2013-01-01 0.469112
-0.282863
-1.509059
-1.135632
2013-01-02 1.212112
-0.173215 0.119209
-1.044236

2013-01-03
-0.861849
-2.104569
-0.494929 1.071804

In [25]:
df['20130102':'20130104']
Out[25]:

A
B C
D
2013-01-02 1.212112
-0.173215 0.119209
-1.044236

2013-01-03
-0.861849
-2.104569
-0.494929 1.071804
2013-01-04 0.721555
-0.706771
-1.039575 0.271860

使用标签选择

更多信息请参阅按标签选择

使用标签获取横截面

Python

In [26]: df.loc[dates[0]]
Out[26]:
A 0.469112
B -0.282863
C -1.509059
D -1.135632
Name: 2013-01-01 00:00:00, dtype: float64

1
2
3
4
5
6
7

In
[26]:
df.loc[dates[0]]

Out[26]:

A 0.469112

B -0.282863
C
-1.509059

D -1.135632
Name:
2013-01-01
00:00:00,
dtype:
float64

使用标签选择多轴

Python

In [27]: df.loc[:,['A','B']]
Out[27]:
A B
2013-01-01 0.469112 -0.282863
2013-01-02 1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04 0.721555 -0.706771
2013-01-05 -0.424972 0.567020
2013-01-06 -0.673690 0.113648

1
2
3
4
5
6
7
8
9

In
[27]:
df.loc[:,['A','B']]

Out[27]:

A B

2013-01-01 0.469112
-0.282863
2013-01-02 1.212112
-0.173215

2013-01-03
-0.861849
-2.104569
2013-01-04 0.721555
-0.706771

2013-01-05
-0.424972 0.567020
2013-01-06
-0.673690 0.113648

显示标签切片, 包含两个端点

Python

In [28]: df.loc['20130102':'20130104',['A','B']]
Out[28]:
A B
2013-01-02 1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04 0.721555 -0.706771

1
2
3
4
5
6

In
[28]:
df.loc['20130102':'20130104',['A','B']]

Out[28]:

A B

2013-01-02 1.212112
-0.173215
2013-01-03
-0.861849
-2.104569

2013-01-04 0.721555
-0.706771

降低返回对象维度

Python

In [29]: df.loc['20130102',['A','B']]
Out[29]:
A 1.212112
B -0.173215
Name: 2013-01-02 00:00:00, dtype: float64

1
2
3
4
5

In
[29]:
df.loc['20130102',['A','B']]

Out[29]:

A 1.212112

B -0.173215
Name:
2013-01-02
00:00:00,
dtype:
float64

获取标量值

Python

In [30]: df.loc[dates[0],'A']
Out[30]: 0.46911229990718628

1
2

In
[30]:
df.loc[dates[0],'A']

Out[30]:
0.46911229990718628

快速访问并获取标量数据 (等价上面的方法)

Python

In [31]: df.at[dates[0],'A']
Out[31]: 0.46911229990718628

1
2

In
[31]:
df.at[dates[0],'A']

Out[31]:
0.46911229990718628

按位置选择

更多信息请参阅按位置参阅

传递整数选择位置

Python

In [32]: df.iloc[3]
Out[32]:
A 0.721555
B -0.706771
C -1.039575
D 0.271860
Name: 2013-01-04 00:00:00, dtype: float64

1
2
3
4
5
6
7

In
[32]:
df.iloc[3]

Out[32]:

A 0.721555

B -0.706771
C
-1.039575

D 0.271860
Name:
2013-01-04
00:00:00,
dtype:
float64

使用整数片断,效果类似numpy/python

Python

In [33]: df.iloc[3:5,0:2]
Out[33]:
A B
2013-01-04 0.721555 -0.706771
2013-01-05 -0.424972 0.567020

1
2
3
4
5

In
[33]:
df.iloc[3:5,0:2]

Out[33]:

A B

2013-01-04 0.721555
-0.706771
2013-01-05
-0.424972 0.567020

使用整数偏移定位列表,效果类似 numpy/python 样式

Python

In [34]: df.iloc[[1,2,4],[0,2]]
Out[34]:
A C
2013-01-02 1.212112 0.119209
2013-01-03 -0.861849 -0.494929
2013-01-05 -0.424972 0.276232

1
2
3
4
5
6

In
[34]:
df.iloc[[1,2,4],[0,2]]

Out[34]:

A C

2013-01-02 1.212112 0.119209
2013-01-03
-0.861849
-0.494929

2013-01-05
-0.424972 0.276232

显式行切片

Python

In [35]: df.iloc[1:3,:]
Out[35]:
A B C D
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804

1
2
3
4
5

In
[35]:
df.iloc[1:3,:]

Out[35]:

A B
C D

2013-01-02 1.212112
-0.173215 0.119209
-1.044236
2013-01-03
-0.861849
-2.104569
-0.494929 1.071804

显式列切片

Python

In [36]: df.iloc[:,1:3]
Out[36]:
B C
2013-01-01 -0.282863 -1.509059
2013-01-02 -0.173215 0.119209
2013-01-03 -2.104569 -0.494929
2013-01-04 -0.706771 -1.039575
2013-01-05 0.567020 0.276232
2013-01-06 0.113648 -1.478427

1
2
3
4
5
6
7
8
9

In
[36]:
df.iloc[:,1:3]

Out[36]:

B C

2013-01-01
-0.282863
-1.509059
2013-01-02
-0.173215 0.119209

2013-01-03
-2.104569
-0.494929
2013-01-04
-0.706771
-1.039575

2013-01-05 0.567020 0.276232
2013-01-06 0.113648
-1.478427

显式获取一个值

Python

In [37]: df.iloc[1,1]
Out[37]: -0.17321464905330861

1
2

In
[37]:
df.iloc[1,1]

Out[37]:
-0.17321464905330861

快速访问一个标量(等同上个方法)

Python

In [38]: df.iat[1,1]
Out[38]: -0.17321464905330861

1
2

In
[38]:
df.iat[1,1]

Out[38]:
-0.17321464905330861

布尔索引

使用单个列的值选择数据.

Python

In [39]: df[df.A > 0]
Out[39]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-04 0.721555 -0.706771 -1.039575 0.271860

1
2
3
4
5
6

In
[39]:
df[df.A
> 0]

Out[39]:

A B
C D

2013-01-01 0.469112
-0.282863
-1.509059
-1.135632
2013-01-02 1.212112
-0.173215 0.119209
-1.044236

2013-01-04 0.721555
-0.706771
-1.039575 0.271860

where 操作.

Python

In [40]: df[df > 0]
Out[40]:
A B C D
2013-01-01 0.469112 NaN NaN NaN
2013-01-02 1.212112 NaN 0.119209 NaN
2013-01-03 NaN NaN NaN 1.071804
2013-01-04 0.721555 NaN NaN 0.271860
2013-01-05 NaN 0.567020 0.276232 NaN
2013-01-06 NaN 0.113648 NaN 0.524988

1
2
3
4
5
6
7
8
9

In
[40]:
df[df
> 0]

Out[40]:

A B
C D

2013-01-01 0.469112
NaN NaN
NaN
2013-01-02 1.212112
NaN 0.119209
NaN

2013-01-03
NaN NaN
NaN 1.071804
2013-01-04 0.721555
NaN NaN 0.271860

2013-01-05
NaN 0.567020 0.276232
NaN
2013-01-06
NaN 0.113648
NaN 0.524988

使用 isin() 筛选:

Python

In [41]: df2 = df.copy()
In [42]: df2['E']=['one', 'one','two','three','four','three']

In [43]: df2
Out[43]:
A B C D E
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 one
2013-01-02 1.212112 -0.173215 0.119209 -1.044236 one
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two
2013-01-04 0.721555 -0.706771 -1.039575 0.271860 three
2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four
2013-01-06 -0.673690 0.113648 -1.478427 0.524988 three

In [44]: df2[df2['E'].isin(['two','four'])]
Out[44]:
A B C D E
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two
2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

In
[41]:
df2 =
df.copy()

In [42]:
df2['E']=['one',
'one','two','three','four','three']

In [43]:
df2
Out[43]:

A
B C
D E
2013-01-01 0.469112
-0.282863
-1.509059
-1.135632 one

2013-01-02 1.212112
-0.173215 0.119209
-1.044236 one
2013-01-03
-0.861849
-2.104569
-0.494929 1.071804 two

2013-01-04 0.721555
-0.706771
-1.039575 0.271860 three
2013-01-05
-0.424972 0.567020 0.276232
-1.087401
four

2013-01-06
-0.673690 0.113648
-1.478427 0.524988 three

In [44]:
df2[df2['E'].isin(['two','four'])]
Out[44]:

A
B C
D E
2013-01-03
-0.861849
-2.104569
-0.494929 1.071804
two

2013-01-05
-0.424972 0.567020 0.276232
-1.087401 four

赋值

赋值一个新列,通过索引自动对齐数据

Python

In [45]: s1 = pd.Series([1,2,3,4,5,6],index=pd.date_range('20130102',periods=6))
In [46]: s1
Out[46]:
2013-01-02 1
2013-01-03 2
2013-01-04 3
2013-01-05 4
2013-01-06 5
2013-01-07 6
Freq: D, dtype: int64

In [47]: df['F'] = s1

1
2
3
4
5
6
7
8
9
10
11
12

In
[45]:
s1 =
pd.Series([1,2,3,4,5,6],index=pd.date_range('20130102',periods=6))

In [46]:
s1
Out[46]:

2013-01-02 1
2013-01-03 2

2013-01-04 3
2013-01-05 4

2013-01-06 5
2013-01-07 6

Freq:
D,
dtype:
int64

In [47]:
df['F']
= s1

按标签赋值

Python

In [48]: df.at[dates[0],'A'] = 0

1

In
[48]:
df.at[dates[0],'A']
= 0

按位置赋值

Python

In [49]: df.iat[0,1] = 0

1

In
[49]:
df.iat[0,1]
= 0

通过numpy数组分配赋值

Python

In [50]: df.loc[:,'D'] = np.array([5] * len(df))

1

In
[50]:
df.loc[:,'D']
= np.array([5]
* len(df))

之前的操作结果

Python

In [51]: df
Out[51]:
A B C D F
2013-01-01 0.000000 0.000000 -1.509059 5 NaN
2013-01-02 1.212112 -0.173215 0.119209 5 1
2013-01-03 -0.861849 -2.104569 -0.494929 5 2
2013-01-04 0.721555 -0.706771 -1.039575 5 3
2013-01-05 -0.424972 0.567020 0.276232 5 4
2013-01-06 -0.673690 0.113648 -1.478427 5 5

1
2
3
4
5
6
7
8
9

In
[51]:
df

Out[51]:

A B
C D
F

2013-01-01 0.000000 0.000000
-1.509059 5
NaN
2013-01-02 1.212112
-0.173215 0.119209 5
1

2013-01-03
-0.861849
-2.104569
-0.494929 5
2
2013-01-04 0.721555
-0.706771
-1.039575 5
3

2013-01-05
-0.424972 0.567020 0.276232 5
4
2013-01-06
-0.673690 0.113648
-1.478427 5
5

where 操作赋值.

Python

In [52]: df2 = df.copy()
In [53]: df2[df2 > 0] = -df2
In [54]: df2
Out[54]:
A B C D F
2013-01-01 0.000000 0.000000 -1.509059 -5 NaN
2013-01-02 -1.212112 -0.173215 -0.119209 -5 -1
2013-01-03 -0.861849 -2.104569 -0.494929 -5 -2
2013-01-04 -0.721555 -0.706771 -1.039575 -5 -3
2013-01-05 -0.424972 -0.567020 -0.276232 -5 -4
2013-01-06 -0.673690 -0.113648 -1.478427 -5 -5

1
2
3
4
5
6
7
8
9
10
11

In
[52]:
df2 =
df.copy()

In [53]:
df2[df2
> 0]
= -df2
In
[54]:
df2

Out[54]:

A B
C D
F

2013-01-01 0.000000 0.000000
-1.509059
-5
NaN
2013-01-02
-1.212112
-0.173215
-0.119209
-5 -1

2013-01-03
-0.861849
-2.104569
-0.494929
-5 -2
2013-01-04
-0.721555
-0.706771
-1.039575
-5 -3

2013-01-05
-0.424972
-0.567020
-0.276232
-5 -4
2013-01-06
-0.673690
-0.113648
-1.478427
-5 -5

丢失的数据

pandas主要使用np.nan替换丢失的数据. 默认情况下它并不包含在计算中. 请参阅
Missing Data section

重建索引允许更改/添加/删除指定轴索引,并返回数据副本.

Python

In [55]: df1 = df.reindex(index=dates[0:4],columns=list(df.columns) + ['E'])
In [56]: df1.loc[dates[0]:dates[1],'E'] = 1
In [57]: df1
Out[57]:
A B C D F E
2013-01-01 0.000000 0.000000 -1.509059 5 NaN 1
2013-01-02 1.212112 -0.173215 0.119209 5 1 1
2013-01-03 -0.861849 -2.104569 -0.494929 5 2 NaN
2013-01-04 0.721555 -0.706771 -1.039575 5 3 NaN

1
2
3
4
5
6
7
8
9

In
[55]:
df1 =
df.reindex(index=dates[0:4],columns=list(df.columns)
+ ['E'])

In [56]:
df1.loc[dates[0]:dates[1],'E']
= 1
In
[57]:
df1

Out[57]:

A B
C D
F E

2013-01-01 0.000000 0.000000
-1.509059 5
NaN 1
2013-01-02 1.212112
-0.173215 0.119209 5
1 1

2013-01-03
-0.861849
-2.104569
-0.494929 5
2 NaN
2013-01-04 0.721555
-0.706771
-1.039575 5
3 NaN

删除任何有丢失数据的行.

Python

In [58]: df1.dropna(how='any')
Out[58]:
A B C D F E
2013-01-02 1.212112 -0.173215 0.119209 5 1 1

1
2
3
4

In
[58]:
df1.dropna(how='any')

Out[58]:

A B
C D F E

2013-01-02 1.212112
-0.173215 0.119209 5 1 1

填充丢失数据

Python

In [59]: df1.fillna(value=5)
Out[59]:
A B C D F E
2013-01-01 0.000000 0.000000 -1.509059 5 5 1
2013-01-02 1.212112 -0.173215 0.119209 5 1 1
2013-01-03 -0.861849 -2.104569 -0.494929 5 2 5
2013-01-04 0.721555 -0.706771 -1.039575 5 3 5

1
2
3
4
5
6
7

In
[59]:
df1.fillna(value=5)

Out[59]:

A B
C D F E

2013-01-01 0.000000 0.000000
-1.509059 5 5 1
2013-01-02 1.212112
-0.173215 0.119209 5 1 1

2013-01-03
-0.861849
-2.104569
-0.494929 5 2 5
2013-01-04 0.721555
-0.706771
-1.039575 5 3 5

获取值是否nan的布尔标记

Python

In [60]: pd.isnull(df1)
Out[60]:
A B C D F E
2013-01-01 False False False False True False
2013-01-02 False False False False False False
2013-01-03 False False False False False True
2013-01-04 False False False False False True

1
2
3
4
5
6
7

In
[60]:
pd.isnull(df1)

Out[60]:

A B C D F E

2013-01-01 False False False False
True False
2013-01-02 False False False False False False

2013-01-03 False False False False False
True
2013-01-04 False False False False False
True

运算

参阅二元运算基础

统计

计算时一般不包括丢失的数据

执行描述性统计

Python

In [61]: df.mean()
Out[61]:
A -0.004474
B -0.383981
C -0.687758
D 5.000000
F 3.000000
dtype: float64

1
2
3
4
5
6
7
8

In
[61]:
df.mean()

Out[61]:

A
-0.004474

B -0.383981
C
-0.687758

D 5.000000
F 3.000000

dtype:
float64

在其他轴做相同的运算

Python

In [62]: df.mean(1)
Out[62]:
2013-01-01 0.872735
2013-01-02 1.431621
2013-01-03 0.707731
2013-01-04 1.395042
2013-01-05 1.883656
2013-01-06 1.592306
Freq: D, dtype: float64

1
2
3
4
5
6
7
8
9

In
[62]:
df.mean(1)

Out[62]:

2013-01-01 0.872735

2013-01-02 1.431621
2013-01-03 0.707731

2013-01-04 1.395042
2013-01-05 1.883656

2013-01-06 1.592306
Freq:
D,
dtype:
float64

用于运算的对象有不同的维度并需要对齐.除此之外,pandas会自动沿着指定维度计算.

Python

In [63]: s = pd.Series([1,3,5,np.nan,6,8],index=dates).shift(2)
In [64]: s
Out[64]:
2013-01-01 NaN
2013-01-02 NaN
2013-01-03 1
2013-01-04 3
2013-01-05 5
2013-01-06 NaN
Freq: D, dtype: float64

In [65]: df.sub(s,axis='index')
Out[65]:
A B C D F
2013-01-01 NaN NaN NaN NaN NaN
2013-01-02 NaN NaN NaN NaN NaN
2013-01-03 -1.861849 -3.104569 -1.494929 4 1
2013-01-04 -2.278445 -3.706771 -4.039575 2 0
2013-01-05 -5.424972 -4.432980 -4.723768 0 -1
2013-01-06 NaN NaN NaN NaN NaN

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

In
[63]:
s =
pd.Series([1,3,5,np.nan,6,8],index=dates).shift(2)

In [64]:
s
Out[64]:

2013-01-01
NaN
2013-01-02
NaN

2013-01-03
1
2013-01-04
3

2013-01-05
5
2013-01-06
NaN

Freq:
D,
dtype:
float64

In [65]:
df.sub(s,axis='index')
Out[65]:

A
B C
D F
2013-01-01
NaN NaN
NaN NaN NaN

2013-01-02
NaN NaN
NaN NaN NaN
2013-01-03
-1.861849
-3.104569
-1.494929
4 1

2013-01-04
-2.278445
-3.706771
-4.039575
2 0
2013-01-05
-5.424972
-4.432980
-4.723768
0 -1

2013-01-06
NaN NaN
NaN NaN NaN

Apply

在数据上使用函数

Python

In [66]: df.apply(np.cumsum)
Out[66]:
A B C D F
2013-01-01 0.000000 0.000000 -1.509059 5 NaN
2013-01-02 1.212112 -0.173215 -1.389850 10 1
2013-01-03 0.350263 -2.277784 -1.884779 15 3
2013-01-04 1.071818 -2.984555 -2.924354 20 6
2013-01-05 0.646846 -2.417535 -2.648122 25 10
2013-01-06 -0.026844 -2.303886 -4.126549 30 15

In [67]: df.apply(lambda x: x.max() - x.min())
Out[67]:
A 2.073961
B 2.671590
C 1.785291
D 0.000000
F 4.000000
dtype: float64

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

In
[66]:
df.apply(np.cumsum)

Out[66]:

A B
C D
F

2013-01-01 0.000000 0.000000
-1.509059
5 NaN
2013-01-02 1.212112
-0.173215
-1.389850 10
1

2013-01-03 0.350263
-2.277784
-1.884779 15
3
2013-01-04 1.071818
-2.984555
-2.924354 20
6

2013-01-05 0.646846
-2.417535
-2.648122 25 10
2013-01-06
-0.026844
-2.303886
-4.126549 30 15

In
[67]:
df.apply(lambda
x:
x.max()
- x.min())

Out[67]:

A 2.073961

B 2.671590
C 1.785291

D 0.000000
F 4.000000

dtype:
float64

直方图

请参阅
直方图和离散化

Python

In [68]: s = pd.Series(np.random.randint(0,7,size=10))
In [69]: s
Out[69]:
0 4
1 2
2 1
3 2
4 6
5 4
6 4
7 6
8 4
9 4
dtype: int32

In [70]: s.value_counts()
Out[70]:
4 5
6 2
2 2
1 1
dtype: int64

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

In
[68]:
s =
pd.Series(np.random.randint(0,7,size=10))

In [69]:
s
Out[69]:

0 4
1 2

2 1
3 2

4 6
5 4

6 4
7 6

8 4
9 4

dtype:
int32

In [70]:
s.value_counts()
Out[70]:

4 5
6 2

2 2
1 1

dtype:
int64

字符串方法

序列可以使用一些字符串处理方法很轻易操作数据组中的每个元素,比如以下代码片断。 注意字符匹配方法默认情况下通常使用正则表达式(并且大多数时候都如此). 更多信息请参阅字符串向量方法.

Python

In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
In [72]: s.str.lower()
Out[72]:
0 a
1 b
2 c
3 aaba
4 baca
5 NaN
6 caba
7 dog
8 cat
dtype: object

1
2
3
4
5
6
7
8
9
10
11
12
13

In
[71]:
s =
pd.Series(['A',
'B',
'C',
'Aaba',
'Baca',
np.nan,
'CABA',
'dog',
'cat'])

In [72]:
s.str.lower()
Out[72]:

0 a
1
b

2 c
3 aaba

4 baca
5
NaN

6 caba
7
dog

8 cat
dtype:
object

合并

连接

pandas提供各种工具以简便合并序列,数据桢,和组合对象, 在连接/合并类型操作中使用多种类型索引和相关数学函数.

请参阅合并部分

把pandas对象连接到一起

Python

In [73]: df = pd.DataFrame(np.random.randn(10, 4))
In [74]: df
Out[74]:
0 1 2 3
0 -0.548702 1.467327 -1.015962 -0.483075
1 1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952 0.991460 -0.919069 0.266046
3 -0.709661 1.669052 1.037882 -1.705775
4 -0.919854 -0.042379 1.247642 -0.009920
5 0.290213 0.495767 0.362949 1.548106
6 -1.131345 -0.089329 0.337863 -0.945867
7 -0.932132 1.956030 0.017587 -0.016692
8 -0.575247 0.254161 -1.143704 0.215897
9 1.193555 -0.077118 -0.408530 -0.862495

# break it into pieces
In [75]: pieces = [df[:3], df[3:7], df[7:]]
In [76]: pd.concat(pieces)
Out[76]:
0 1 2 3
0 -0.548702 1.467327 -1.015962 -0.483075
1 1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952 0.991460 -0.919069 0.266046
3 -0.709661 1.669052 1.037882 -1.705775
4 -0.919854 -0.042379 1.247642 -0.009920
5 0.290213 0.495767 0.362949 1.548106
6 -1.131345 -0.089329 0.337863 -0.945867
7 -0.932132 1.956030 0.017587 -0.016692
8 -0.575247 0.254161 -1.143704 0.215897
9 1.193555 -0.077118 -0.408530 -0.862495

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

In
[73]:
df =
pd.DataFrame(np.random.randn(10,
4))

In [74]:
df
Out[74]:

0
1 2
3
0
-0.548702 1.467327
-1.015962
-0.483075

1 1.637550
-1.217659
-0.291519
-1.745505
2
-0.263952 0.991460
-0.919069 0.266046

3 -0.709661 1.669052 1.037882
-1.705775
4
-0.919854
-0.042379 1.247642
-0.009920

5 0.290213 0.495767 0.362949 1.548106
6
-1.131345
-0.089329 0.337863
-0.945867

7 -0.932132 1.956030 0.017587
-0.016692
8
-0.575247 0.254161
-1.143704 0.215897

9 1.193555
-0.077118
-0.408530
-0.862495

# break it into pieces
In
[75]:
pieces =
[df[:3],
df[3:7],
df[7:]]

In [76]:
pd.concat(pieces)
Out[76]:

0
1 2
3
0
-0.548702 1.467327
-1.015962
-0.483075

1 1.637550
-1.217659
-0.291519
-1.745505
2
-0.263952 0.991460
-0.919069 0.266046

3 -0.709661 1.669052 1.037882
-1.705775
4
-0.919854
-0.042379 1.247642
-0.009920

5 0.290213 0.495767 0.362949 1.548106
6
-1.131345
-0.089329 0.337863
-0.945867

7 -0.932132 1.956030 0.017587
-0.016692
8
-0.575247 0.254161
-1.143704 0.215897

9 1.193555
-0.077118
-0.408530
-0.862495

连接

SQL样式合并. 请参阅 数据库style联接

Python

In [77]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})
In [78]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})
In [79]: left
Out[79]:
key lval
0 foo 1
1 foo 2

In [80]: right
Out[80]:
key rval
0 foo 4
1 foo 5

In [81]: pd.merge(left, right, on='key')
Out[81]:
key lval rval
0 foo 1 4
1 foo 1 5
2 foo 2 4
3 foo 2 5

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

In
[77]:
left =
pd.DataFrame({'key':
['foo',
'foo'],
'lval':
[1,
2]})

In [78]:
right =
pd.DataFrame({'key':
['foo',
'foo'],
'rval':
[4,
5]})
In
[79]:
left

Out[79]:

key lval

0 foo
1
1 foo
2

In
[80]:
right

Out[80]:

key rval

0 foo
4
1 foo
5

In
[81]:
pd.merge(left,
right,
on='key')

Out[81]:

key lval rval

0 foo
1 4
1 foo
1 5

2 foo
2 4
3 foo
2 5

添加

添加行到数据增. 参阅
添加

Python

In [82]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])
In [83]: df
Out[83]:
A B C D
0 1.346061 1.511763 1.627081 -0.990582
1 -0.441652 1.211526 0.268520 0.024580
2 -1.577585 0.396823 -0.105381 -0.532532
3 1.453749 1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346 0.339969 -0.693205
5 -0.339355 0.593616 0.884345 1.591431
6 0.141809 0.220390 0.435589 0.192451
7 -0.096701 0.803351 1.715071 -0.708758

In [84]: s = df.iloc[3]
In [85]: df.append(s, ignore_index=True)
Out[85]:
A B C D
0 1.346061 1.511763 1.627081 -0.990582
1 -0.441652 1.211526 0.268520 0.024580
2 -1.577585 0.396823 -0.105381 -0.532532
3 1.453749 1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346 0.339969 -0.693205
5 -0.339355 0.593616 0.884345 1.591431
6 0.141809 0.220390 0.435589 0.192451
7 -0.096701 0.803351 1.715071 -0.708758
8 1.453749 1.208843 -0.080952 -0.264610

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

In
[82]:
df =
pd.DataFrame(np.random.randn(8,
4),
columns=['A','B','C','D'])

In [83]:
df
Out[83]:

A
B C
D
0 1.346061 1.511763 1.627081
-0.990582

1 -0.441652 1.211526 0.268520 0.024580
2
-1.577585 0.396823
-0.105381
-0.532532

3 1.453749 1.208843
-0.080952
-0.264610
4
-0.727965
-0.589346 0.339969
-0.693205

5 -0.339355 0.593616 0.884345 1.591431
6 0.141809 0.220390 0.435589 0.192451

7 -0.096701 0.803351 1.715071
-0.708758

In [84]:
s =
df.iloc[3]
In
[85]:
df.append(s,
ignore_index=True)

Out[85]:

A
B C
D

0 1.346061 1.511763 1.627081
-0.990582
1
-0.441652 1.211526 0.268520 0.024580

2 -1.577585 0.396823
-0.105381
-0.532532
3 1.453749 1.208843
-0.080952
-0.264610

4 -0.727965
-0.589346 0.339969
-0.693205
5
-0.339355 0.593616 0.884345 1.591431

6 0.141809 0.220390 0.435589 0.192451
7
-0.096701 0.803351 1.715071
-0.708758

8 1.453749 1.208843
-0.080952
-0.264610

分组

对于“group by”指的是以下一个或多个处理

将数据按某些标准分割为不同的组
在每个独立组上应用函数
组合结果为一个数据结构

请参阅
分组部分

Python

In [86]: df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
....: 'foo', 'bar', 'foo', 'foo'],
....: 'B' : ['one', 'one', 'two', 'three',
....: 'two', 'two', 'one', 'three'],
....: 'C' : np.random.randn(8),
....: 'D' : np.random.randn(8)})
....:
In [87]: df
Out[87]:
A B C D
0 foo one -1.202872 -0.055224
1 bar one -1.814470 2.395985
2 foo two 1.018601 1.552825
3 bar three -0.595447 0.166599
4 foo two 1.395433 0.047609
5 bar two -0.392670 -0.136473
6 foo one 0.007207 -0.561757
7 foo three 1.928123 -1.623033

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

In
[86]:
df =
pd.DataFrame({'A'
: ['foo',
'bar',
'foo',
'bar',

....: 'foo',
'bar',
'foo',
'foo'],

....: 'B'
: ['one',
'one',
'two',
'three',

....: 'two',
'two',
'one',
'three'],

....: 'C'
: np.random.randn(8),

....: 'D'
: np.random.randn(8)})

....:

In [87]:
df
Out[87]:

A B
C D
0 foo one
-1.202872
-0.055224

1 bar one
-1.814470 2.395985
2 foo two 1.018601 1.552825

3 bar three
-0.595447 0.166599
4 foo two 1.395433 0.047609

5 bar two
-0.392670
-0.136473
6 foo one 0.007207
-0.561757

7 foo three 1.928123
-1.623033

分组然后应用函数统计总和存放到结果组

Python

In [88]: df.groupby('A').sum()
Out[88]:
C D
A
bar -2.802588 2.42611
foo 3.146492 -0.63958

1
2
3
4
5
6

In
[88]:
df.groupby('A').sum()

Out[88]:

C D

A

bar
-2.802588 2.42611

foo 3.146492
-0.63958

按多列分组为层次索引,然后应用函数

Python

In [89]: df.groupby(['A','B']).sum()
Out[89]:
C D
A B
bar one -1.814470 2.395985
three -0.595447 0.166599
two -0.392670 -0.136473
foo one -1.195665 -0.616981
three 1.928123 -1.623033
two 2.414034 1.600434

1
2
3
4
5
6
7
8
9
10

In
[89]:
df.groupby(['A','B']).sum()

Out[89]:

C
D

A B
bar
one -1.814470 2.395985

three
-0.595447 0.166599
two
-0.392670
-0.136473

foo one
-1.195665
-0.616981
three 1.928123
-1.623033

two 2.414034 1.600434

重塑

请参阅章节
分层索引 和
重塑.

堆叠

Python

In [90]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
....: 'foo', 'foo', 'qux', 'qux'],
....: ['one', 'two', 'one', 'two',
....: 'one', 'two', 'one', 'two']]))
....:
In [91]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
In [92]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])
In [93]: df2 = df[:4]
In [94]: df2
Out[94]:
A B
first second
bar one 0.029399 -0.542108
two 0.282696 -0.087302
baz one -1.575170 1.771208
two 0.816482 1.100230

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

In
[90]:
tuples =
list(zip(*[['bar',
'bar',
'baz',
'baz',

....: 'foo',
'foo',
'qux',
'qux'],

....:
['one',
'two',
'one',
'two',

....: 'one',
'two',
'one',
'two']]))

....:

In [91]:
index =
pd.MultiIndex.from_tuples(tuples,
names=['first',
'second'])
In
[92]:
df =
pd.DataFrame(np.random.randn(8,
2),
index=index,
columns=['A',
'B'])

In [93]:
df2 =
df[:4]
In
[94]:
df2

Out[94]:

A B

first second
bar
one 0.029399
-0.542108

two
0.282696 -0.087302
baz
one -1.575170 1.771208

two
0.816482 1.100230

堆叠 函数 “压缩” 数据桢的列一个级别.

Python

In [95]: stacked = df2.stack()
In [96]: stacked
Out[96]:
first second
bar one A 0.029399
B -0.542108
two A 0.282696
B -0.087302
baz one A -1.575170
B 1.771208
two A 0.816482
B 1.100230
dtype: float64

1
2
3
4
5
6
7
8
9
10
11
12
13

In
[95]:
stacked =
df2.stack()

In [96]:
stacked
Out[96]:

first second
bar one
A 0.029399

B
-0.542108

two A 0.282696

B
-0.087302
baz one
A -1.575170

B 1.771208

two A 0.816482

B 1.100230
dtype:
float64

被“堆叠”数据桢或序列(有多个索引作为索引), 其堆叠的反向操作是未堆栈, 上面的数据默认反堆叠到上一级别:

Python

In [97]: stacked.unstack()
Out[97]:
A B
first second
bar one 0.029399 -0.542108
two 0.282696 -0.087302
baz one -1.575170 1.771208
two 0.816482 1.100230

In [98]: stacked.unstack(1)
Out[98]:
second one two
first
bar A 0.029399 0.282696
B -0.542108 -0.087302
baz A -1.575170 0.816482
B 1.771208 1.100230

In [99]: stacked.unstack(0)
Out[99]:
first bar baz
second
one A 0.029399 -1.575170
B -0.542108 1.771208
two A 0.282696 0.816482
B -0.087302 1.100230

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

In
[97]:
stacked.unstack()

Out[97]:

A B

first second
bar
one 0.029399
-0.542108

two
0.282696 -0.087302
baz
one -1.575170 1.771208

two
0.816482 1.100230

In [98]:
stacked.unstack(1)
Out[98]:

second one
two
first

bar A 0.029399 0.282696
B
-0.542108
-0.087302

baz A
-1.575170 0.816482
B 1.771208 1.100230

In
[99]:
stacked.unstack(0)

Out[99]:

first bar
baz

second
one A 0.029399
-1.575170

B
-0.542108 1.771208
two A 0.282696 0.816482

B
-0.087302 1.100230

数据透视表

查看数据透视表.

Python

In [100]: df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3,
.....: 'B' : ['A', 'B', 'C'] * 4,
.....: 'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,
.....: 'D' : np.random.randn(12),
.....: 'E' : np.random.randn(12)})
.....:
In [101]: df
Out[101]:
A B C D E
0 one A foo 1.418757 -0.179666
1 one B foo -1.879024 1.291836
2 two C foo 0.536826 -0.009614
3 three A bar 1.006160 0.392149
4 one B bar -0.029716 0.264599
5 one C bar -1.146178 -0.057409
6 two A foo 0.100900 -1.425638
7 three B foo -1.035018 1.024098
8 one C foo 0.314665 -0.106062
9 one A bar -0.773723 1.824375
10 two B bar -1.170653 0.595974
11 three C bar 0.648740 1.167115

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

In
[100]:
df =
pd.DataFrame({'A'
: ['one',
'one',
'two',
'three']
* 3,

.....: 'B'
: ['A',
'B',
'C']
* 4,

.....: 'C'
: ['foo',
'foo',
'foo',
'bar',
'bar',
'bar']
* 2,

.....: 'D'
: np.random.randn(12),

.....: 'E'
: np.random.randn(12)})

.....:

In
[101]:
df

Out[101]:

A B C
D E

0 one A foo 1.418757
-0.179666
1
one B foo
-1.879024 1.291836

2 two C foo 0.536826
-0.009614
3
three A bar 1.006160 0.392149

4 one B bar
-0.029716 0.264599
5
one C bar
-1.146178
-0.057409

6 two A foo 0.100900
-1.425638
7
three B foo
-1.035018 1.024098

8 one C foo 0.314665
-0.106062
9
one A bar
-0.773723 1.824375

10 two B bar
-1.170653 0.595974
11 three C bar 0.648740 1.167115

我们可以从此数据非常容易的产生数据透视表:

Python

In [102]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
Out[102]:
C bar foo
A B
one A -0.773723 1.418757
B -0.029716 -1.879024
C -1.146178 0.314665
three A 1.006160 NaN
B NaN -1.035018
C 0.648740 NaN
two A NaN 0.100900
B -1.170653 NaN
C NaN 0.536826

1
2
3
4
5
6
7
8
9
10
11
12
13

In
[102]:
pd.pivot_table(df,
values='D',
index=['A',
'B'],
columns=['C'])

Out[102]:

C
bar foo

A B
one
A -0.773723 1.418757

B
-0.029716
-1.879024
C
-1.146178 0.314665

three A 1.006160
NaN
B
NaN -1.035018

C 0.648740
NaN
two
A NaN 0.100900

B
-1.170653
NaN
C
NaN 0.536826

时间序列

pandas有易用,强大且高效的函数用于高频数据重采样转换操作(例如,转换秒数据到5分钟数据), 这是很普遍的情况,但并不局限于金融应用, 请参阅时间序列章节

Python

In [103]: rng = pd.date_range('1/1/2012', periods=100, freq='S')
In [104]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)
In [105]: ts.resample('5Min', how='sum')
Out[105]:
2012-01-01 25083
Freq: 5T, dtype: int32

1
2
3
4
5
6

In
[103]:
rng =
pd.date_range('1/1/2012',
periods=100,
freq='S')

In [104]:
ts =
pd.Series(np.random.randint(0,
500,
len(rng)),
index=rng)
In
[105]:
ts.resample('5Min',
how='sum')

Out[105]:

2012-01-01 25083

Freq:
5T,
dtype:
int32

时区表示

Python

In [106]: rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D')
In [107]: ts = pd.Series(np.random.randn(len(rng)), rng)
In [108]: ts
Out[108]:
2012-03-06 0.464000
2012-03-07 0.227371
2012-03-08 -0.496922
2012-03-09 0.306389
2012-03-10 -2.290613
Freq: D, dtype: float64

In [109]: ts_utc = ts.tz_localize('UTC')
In [110]: ts_utc
Out[110]:
2012-03-06 00:00:00+00:00 0.464000
2012-03-07 00:00:00+00:00 0.227371
2012-03-08 00:00:00+00:00 -0.496922
2012-03-09 00:00:00+00:00 0.306389
2012-03-10 00:00:00+00:00 -2.290613
Freq: D, dtype: float64

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

In
[106]:
rng =
pd.date_range('3/6/2012 00:00',
periods=5,
freq='D')

In [107]:
ts =
pd.Series(np.random.randn(len(rng)),
rng)
In
[108]:
ts

Out[108]:

2012-03-06 0.464000

2012-03-07 0.227371
2012-03-08
-0.496922

2012-03-09 0.306389
2012-03-10
-2.290613

Freq:
D,
dtype:
float64

In [109]:
ts_utc =
ts.tz_localize('UTC')
In
[110]:
ts_utc

Out[110]:

2012-03-06
00:00:00+00:00 0.464000

2012-03-07
00:00:00+00:00 0.227371
2012-03-08
00:00:00+00:00
-0.496922

2012-03-09
00:00:00+00:00 0.306389
2012-03-10
00:00:00+00:00
-2.290613

Freq:
D,
dtype:
float64

转换到其它时区

Python

In [111]: ts_utc.tz_convert('US/Eastern')
Out[111]:
2012-03-05 19:00:00-05:00 0.464000
2012-03-06 19:00:00-05:00 0.227371
2012-03-07 19:00:00-05:00 -0.496922
2012-03-08 19:00:00-05:00 0.306389
2012-03-09 19:00:00-05:00 -2.290613
Freq: D, dtype: float64

1
2
3
4
5
6
7
8

In
[111]:
ts_utc.tz_convert('US/Eastern')

Out[111]:

2012-03-05
19:00:00-05:00 0.464000

2012-03-06
19:00:00-05:00 0.227371
2012-03-07
19:00:00-05:00
-0.496922

2012-03-08
19:00:00-05:00 0.306389
2012-03-09
19:00:00-05:00
-2.290613

Freq:
D,
dtype:
float64

转换不同的时间跨度

Python

In [112]: rng = pd.date_range('1/1/2012', periods=5, freq='M')
In [113]: ts = pd.Series(np.random.randn(len(rng)), index=rng)
In [114]: ts
Out[114]:
2012-01-31 -1.134623
2012-02-29 -1.561819
2012-03-31 -0.260838
2012-04-30 0.281957
2012-05-31 1.523962
Freq: M, dtype: float64

In [115]: ps = ts.to_period()
In [116]: ps
Out[116]:
2012-01 -1.134623
2012-02 -1.561819
2012-03 -0.260838
2012-04 0.281957
2012-05 1.523962
Freq: M, dtype: float64

In [117]: ps.to_timestamp()
Out[117]:
2012-01-01 -1.134623
2012-02-01 -1.561819
2012-03-01 -0.260838
2012-04-01 0.281957
2012-05-01 1.523962
Freq: MS, dtype: float64

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

In
[112]:
rng =
pd.date_range('1/1/2012',
periods=5,
freq='M')

In [113]:
ts =
pd.Series(np.random.randn(len(rng)),
index=rng)
In
[114]:
ts

Out[114]:

2012-01-31
-1.134623

2012-02-29
-1.561819
2012-03-31
-0.260838

2012-04-30 0.281957
2012-05-31 1.523962

Freq:
M,
dtype:
float64

In [115]:
ps =
ts.to_period()
In
[116]:
ps

Out[116]:

2012-01
-1.134623

2012-02
-1.561819
2012-03
-0.260838

2012-04 0.281957
2012-05 1.523962

Freq:
M,
dtype:
float64

In [117]:
ps.to_timestamp()
Out[117]:

2012-01-01
-1.134623
2012-02-01
-1.561819

2012-03-01
-0.260838
2012-04-01 0.281957

2012-05-01 1.523962
Freq:
MS,
dtype:
float64

转换时段并且使用一些运算函数, 下例中, 我们转换年报11月到季度结束每日上午9点数据

Python

In [118]: prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV')
In [119]: ts = pd.Series(np.random.randn(len(prng)), prng)
In [120]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9
In [121]: ts.head()
Out[121]:
1990-03-01 09:00 -0.902937
1990-06-01 09:00 0.068159
1990-09-01 09:00 -0.057873
1990-12-01 09:00 -0.368204
1991-03-01 09:00 -1.144073
Freq: H, dtype: float64

1
2
3
4
5
6
7
8
9
10
11

In
[118]:
prng =
pd.period_range('1990Q1',
'2000Q4',
freq='Q-NOV')

In [119]:
ts =
pd.Series(np.random.randn(len(prng)),
prng)
In
[120]:
ts.index
= (prng.asfreq('M',
'e')
+ 1).asfreq('H',
's')
+ 9

In [121]:
ts.head()
Out[121]:

1990-03-01
09:00
-0.902937
1990-06-01
09:00 0.068159

1990-09-01
09:00
-0.057873
1990-12-01
09:00
-0.368204

1991-03-01
09:00
-1.144073
Freq:
H,
dtype:
float64

分类

自版本0.15起, pandas可以在数据桢中包含分类. 完整的文档, 请查看分类介绍 and the

API文档.

Python

In [122]: df = pd.DataFrame({"id":[1,2,3,4,5,6], "raw_grade":['a', 'b', 'b', 'a', 'a', 'e']})

1

In
[122]:
df =
pd.DataFrame({"id":[1,2,3,4,5,6],
"raw_grade":['a',
'b',
'b',
'a',
'a',
'e']})

转换原始类别为分类数据类型.

Python

In [123]: df["grade"] = df["raw_grade"].astype("category")
In [124]: df["grade"]
Out[124]:
0 a
1 b
2 b
3 a
4 a
5 e
Name: grade, dtype: category
Categories (3, object): [a, b, e]

1
2
3
4
5
6
7
8
9
10
11

In
[123]:
df["grade"]
= df["raw_grade"].astype("category")

In [124]:
df["grade"]
Out[124]:

0 a
1 b

2 b
3 a

4 a
5 e

Name:
grade,
dtype:
category
Categories
(3,
object):
[a,
b,
e]

重命令分类为更有意义的名称 (分配到Series.cat.categories对应位置!)

Python

In [125]: df["grade"].cat.categories = ["very good", "good", "very bad"]

1

In
[125]:
df["grade"].cat.categories
= ["very good",
"good",
"very bad"]

重排顺分类,同时添加缺少的分类(序列 .cat方法下返回新默认序列)

Python

In [126]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"])
In [127]: df["grade"]
Out[127]:
0 very good
1 good
2 good
3 very good
4 very good
5 very bad
Name: grade, dtype: category
Categories (5, object): [very bad, bad, medium, good, very good]

1
2
3
4
5
6
7
8
9
10
11

In
[126]:
df["grade"]
= df["grade"].cat.set_categories(["very
bad", "bad",
"medium",
"good",
"very good"])

In [127]:
df["grade"]
Out[127]:

0 very
good
1
good

2 good
3 very
good

4 very
good
5
very bad

Name:
grade,
dtype:
category
Categories
(5,
object):
[very bad,
bad,
medium,
good,
very good]

排列分类中的顺序,不是按词汇排列.

Python

In [128]: df.sort("grade")
Out[128]:
id raw_grade grade
5 6 e very bad
1 2 b good
2 3 b good
0 1 a very good
3 4 a very good
4 5 a very good

1
2
3
4
5
6
7
8
9

In
[128]:
df.sort("grade")

Out[128]:

id raw_grade grade

5 6
e very
bad
1
2 b
good

2 3
b good
0
1 a very
good

3 4
a very
good
4
5 a very
good

类别列分组,并且也显示空类别.

Python

In [129]: df.groupby("grade").size()
Out[129]:
grade
very bad 1
bad NaN
medium NaN
good 2
very good 3
dtype: float64

1
2
3
4
5
6
7
8
9

In
[129]:
df.groupby("grade").size()

Out[129]:

grade

very bad 1
bad
NaN

medium NaN
good 2

very good
3
dtype:
float64

绘图

绘图文档.

Python

In [130]: ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
In [131]: ts = ts.cumsum()
In [132]: ts.plot()
Out[132]: <matplotlib.axes._subplots.AxesSubplot at 0xb02091ac>

1
2
3
4

In
[130]:
ts =
pd.Series(np.random.randn(1000),
index=pd.date_range('1/1/2000',
periods=1000))

In [131]:
ts =
ts.cumsum()
In
[132]:
ts.plot()

Out[132]:
<matplotlib.axes._subplots.AxesSubplot
at 0xb02091ac>



在数据桢中,可以很方便的绘制带标签列:

Python

In [133]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,
.....: columns=['A', 'B', 'C', 'D'])
.....:
In [134]: df = df.cumsum()
In [135]: plt.figure(); df.plot(); plt.legend(loc='best')
Out[135]: <matplotlib.legend.Legend at 0xb01c9cac>

1
2
3
4
5
6

In
[133]:
df =
pd.DataFrame(np.random.randn(1000,
4),
index=ts.index,

.....:
columns=['A',
'B',
'C',
'D'])

.....:

In [134]:
df =
df.cumsum()
In
[135]:
plt.figure();
df.plot();
plt.legend(loc='best')

Out[135]:
<matplotlib.legend.Legend
at 0xb01c9cac>



获取数据输入/输出

CSV

写入csv文件

Python

In [136]: df.to_csv('foo.csv')

1

In
[136]:
df.to_csv('foo.csv')

读取csv文件

Python

In [137]: pd.read_csv('foo.csv')
Out[137]:
Unnamed: 0 A B C D
0 2000-01-01 0.266457 -0.399641 -0.219582 1.186860
1 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
2 2000-01-03 -1.734933 0.530468 2.060811 -0.515536
3 2000-01-04 -1.555121 1.452620 0.239859 -1.156896
4 2000-01-05 0.578117 0.511371 0.103552 -2.428202
5 2000-01-06 0.478344 0.449933 -0.741620 -1.962409
6 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753
.. ... ... ... ... ...
993 2002-09-20 -10.628548 -9.153563 -7.883146 28.313940
994 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107
995 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740
996 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439
997 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593
998 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560
999 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368

[1000 rows x 5 columns]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

In
[137]:
pd.read_csv('foo.csv')

Out[137]:

Unnamed:
0 A B
C D

0 2000-01-01
0.266457 -0.399641
-0.219582
1.186860
1 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953

2 2000-01-03 -1.734933
0.530468 2.060811 -0.515536
3 2000-01-04 -1.555121
1.452620 0.239859 -1.156896

4 2000-01-05
0.578117 0.511371 0.103552 -2.428202
5 2000-01-06
0.478344 0.449933
-0.741620 -1.962409

6 2000-01-07
1.235339 -0.091757
-1.543861 -1.084753
.. ... ... ...
... ...

993 2002-09-20
-10.628548 -9.153563
-7.883146 28.313940
994 2002-09-21
-10.390377 -8.727491
-6.399645 30.914107

995 2002-09-22 -8.985362 -8.485624
-4.669462 31.367740
996 2002-09-23 -9.558560 -8.781216
-4.499815 30.518439

997 2002-09-24 -9.902058 -9.340490
-4.386639 30.105593
998 2002-09-25
-10.216020 -9.480682
-3.933802 29.758560

999 2002-09-26
-11.856774
-10.671012
-3.216025 29.369368

[1000
rows x
5 columns]

HDF5

读写HDF存储

写入HDF5存储

Python

In [138]: df.to_hdf('foo.h5','df')

1

In
[138]:
df.to_hdf('foo.h5','df')

读取HDF5存储

Python

In [139]: pd.read_hdf('foo.h5','df')
Out[139]:
A B C D
2000-01-01 0.266457 -0.399641 -0.219582 1.186860
2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
2000-01-03 -1.734933 0.530468 2.060811 -0.515536
2000-01-04 -1.555121 1.452620 0.239859 -1.156896
2000-01-05 0.578117 0.511371 0.103552 -2.428202
2000-01-06 0.478344 0.449933 -0.741620 -1.962409
2000-01-07 1.235339 -0.091757 -1.543861 -1.084753
... ... ... ... ...
2002-09-20 -10.628548 -9.153563 -7.883146 28.313940
2002-09-21 -10.390377 -8.727491 -6.399645 30.914107
2002-09-22 -8.985362 -8.485624 -4.669462 31.367740
2002-09-23 -9.558560 -8.781216 -4.499815 30.518439
2002-09-24 -9.902058 -9.340490 -4.386639 30.105593
2002-09-25 -10.216020 -9.480682 -3.933802 29.758560
2002-09-26 -11.856774 -10.671012 -3.216025 29.369368

[1000 rows x 4 columns]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

In
[139]:
pd.read_hdf('foo.h5','df')

Out[139]:

A B
C D

2000-01-01
0.266457 -0.399641
-0.219582
1.186860
2000-01-02 -1.170732 -0.345873 1.653061 -0.282953

2000-01-03 -1.734933
0.530468 2.060811 -0.515536
2000-01-04 -1.555121
1.452620 0.239859 -1.156896

2000-01-05
0.578117 0.511371 0.103552 -2.428202
2000-01-06
0.478344 0.449933
-0.741620 -1.962409

2000-01-07
1.235339 -0.091757
-1.543861 -1.084753
...
... ...
... ...

2002-09-20
-10.628548 -9.153563
-7.883146 28.313940
2002-09-21
-10.390377 -8.727491
-6.399645 30.914107

2002-09-22 -8.985362 -8.485624
-4.669462 31.367740
2002-09-23 -9.558560 -8.781216
-4.499815 30.518439

2002-09-24 -9.902058 -9.340490
-4.386639 30.105593
2002-09-25
-10.216020 -9.480682
-3.933802 29.758560

2002-09-26
-11.856774
-10.671012
-3.216025 29.369368

[1000
rows x
4 columns]

Excel

读写MS Excel

写入excel文件

Python

In [140]: df.to_excel('foo.xlsx', sheet_name='Sheet1')

1

In
[140]:
df.to_excel('foo.xlsx',
sheet_name='Sheet1')

读取excel文件

Python

In [141]: pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])
Out[141]:
A B C D
2000-01-01 0.266457 -0.399641 -0.219582 1.186860
2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
2000-01-03 -1.734933 0.530468 2.060811 -0.515536
2000-01-04 -1.555121 1.452620 0.239859 -1.156896
2000-01-05 0.578117 0.511371 0.103552 -2.428202
2000-01-06 0.478344 0.449933 -0.741620 -1.962409
2000-01-07 1.235339 -0.091757 -1.543861 -1.084753
... ... ... ... ...
2002-09-20 -10.628548 -9.153563 -7.883146 28.313940
2002-09-21 -10.390377 -8.727491 -6.399645 30.914107
2002-09-22 -8.985362 -8.485624 -4.669462 31.367740
2002-09-23 -9.558560 -8.781216 -4.499815 30.518439
2002-09-24 -9.902058 -9.340490 -4.386639 30.105593
2002-09-25 -10.216020 -9.480682 -3.933802 29.758560
2002-09-26 -11.856774 -10.671012 -3.216025 29.369368

[1000 rows x 4 columns]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

In
[141]:
pd.read_excel('foo.xlsx',
'Sheet1',
index_col=None,
na_values=['NA'])

Out[141]:

A B
C D

2000-01-01
0.266457 -0.399641
-0.219582
1.186860
2000-01-02 -1.170732 -0.345873 1.653061 -0.282953

2000-01-03 -1.734933
0.530468 2.060811 -0.515536
2000-01-04 -1.555121
1.452620 0.239859 -1.156896

2000-01-05
0.578117 0.511371 0.103552 -2.428202
2000-01-06
0.478344 0.449933
-0.741620 -1.962409

2000-01-07
1.235339 -0.091757
-1.543861 -1.084753
...
... ...
... ...

2002-09-20
-10.628548 -9.153563
-7.883146 28.313940
2002-09-21
-10.390377 -8.727491
-6.399645 30.914107

2002-09-22 -8.985362 -8.485624
-4.669462 31.367740
2002-09-23 -9.558560 -8.781216
-4.499815 30.518439

2002-09-24 -9.902058 -9.340490
-4.386639 30.105593
2002-09-25
-10.216020 -9.480682
-3.933802 29.758560

2002-09-26
-11.856774
-10.671012
-3.216025 29.369368

[1000
rows x
4 columns]

陷阱

如果尝试这样操作可能会看到像这样的异常:

Python

>>> if pd.Series([False, True, False]):
print("I was true")
Traceback
...
ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all().

1
2
3
4
5

>>>
if pd.Series([False,
True,
False]):

print("I was true")
Traceback

...
ValueError:
The truth value
of an array
is ambiguous.
Use a.empty,
a.any()
or a.all().

查看对照获取解释和怎么做的帮助

也可以查看陷阱.
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: