您的位置:首页 > 大数据

大数据技术-数据仓库

2017-04-06 16:20 176 查看


摘于:http://webdataanalysis.net

数据仓库的目的是构建面向分析的集成化数据环境,为企业提供决策支持(Decision Support)。其实数据仓库本身并不“生产”任何数据,同时自身也不需要“消费”任何的数据,数据来源于外部,并且开放给外部应用,这也是为什么叫“仓库”,而不叫“工厂”的原因。因此数据仓库的基本架构主要包含的是数据流入流出的过程,可以分为三层——源数据、数据仓库、数据应用:





  从图中可以看出数据仓库的数据来源于不同的源数据,并提供多样的数据应用,数据自上而下流入数据仓库后向上层开放应用,而数据仓库只是中间集成化数据管理的一个平台。

  数据仓库从各数据源获取数据及在数据仓库内的数据转换和流动都可以认为是ETL(抽取Extra, 转化Transfer, 装载Load)的过程,ETL是数据仓库的流水线,也可以认为是数据仓库的血液,它维系着数据仓库中数据的新陈代谢,而数据仓库日常的管理和维护工作的大部分精力就是保持ETL的正常和稳定。

  下面主要简单介绍下数据仓库架构中的各个模块,当然这里所介绍的数据仓库主要是指网站数据仓库。


数据仓库的数据来源

  其实之前的一篇文章已经介绍过数据仓库各种源数据的类型——数据仓库的源数据类型,所以这里不再详细介绍。

  对于网站数据仓库而言,点击流日志是一块主要的数据来源,它是网站分析的基础数据;当然网站的数据库数据也并不可少,其记录这网站运营的数据及各种用户操作的结果,对于分析网站Outcome这类数据更加精准;其他是网站内外部可能产生的文档及其它各类对于公司决策有用的数据。


数据仓库的数据存储

  源数据通过ETL的日常任务调度导出,并经过转换后以特性的形式存入数据仓库。其实这个过程一直有很大的争议,就是到底数据仓库需不需要储存细节数据,一方的观点是数据仓库面向分析,所以只要存储特定需求的多维分析模型;另一方的观点是数据仓库先要建立和维护细节数据,再根据需求聚合和处理细节数据生成特定的分析模型。我比较偏向后面一个观点:数据仓库并不需要储存所有的原始数据,但数据仓库需要储存细节数据,并且导入的数据必须经过整理和转换使其面向主题。简单地解释下:

  (1).为什么不需要所有原始数据?数据仓库面向分析处理,但是某些源数据对于分析而言没有价值或者其可能产生的价值远低于储存这些数据所需要的数据仓库的实现和性能上的成本。比如我们知道用户的省份、城市足够,至于用户究竟住哪里可能只是物流商关心的事,或者用户在博客的评论内容可能只是文本挖掘会有需要,但将这些冗长的评论文本存在数据仓库就得不偿失;

  (2).为什么要存细节数据?细节数据是必需的,数据仓库的分析需求会时刻变化,而有了细节数据就可以做到以不变应万变,但如果我们只存储根据某些需求搭建起来的数据模型,那么显然对于频繁变动的需求会手足无措;

  (3).为什么要面向主题?面向主题是数据仓库的第一特性,主要是指合理地组织数据以方面实现分析。对于源数据而言,其数据组织形式是多样的,像点击流的数据格式是未经优化的,前台数据库的数据是基于OLTP操作组织优化的,这些可能都不适合分析,而整理成面向主题的组织形式才是真正地利于分析的,比如将点击流日志整理成页面(Page)、访问(Visit或Session)、用户(Visitor)三个主题,这样可以明显提升分析的效率。

  数据仓库基于维护细节数据的基础上在对数据进行处理,使其真正地能够应用于分析。主要包括三个方面:


数据的聚合

  这里的聚合数据指的是基于特定需求的简单聚合(基于多维数据的聚合体现在多维数据模型中),简单聚合可以是网站的总Pageviews、Visits、Unique Visitors等汇总数据,也可以是Avg. time on page、Avg. time on site等平均数据,这些数据可以直接地展示于报表上。


多维数据模型

  多维数据模型提供了多角度多层次的分析应用,比如基于时间维、地域维等构建的销售星形模型、雪花模型,可以实现在各时间维度和地域维度的交叉查询,以及基于时间维和地域维的细分。所以多维数据模型的应用一般都是基于联机分析处理(Online Analytical Process, OLAP)的,而面向特定需求群体的数据集市也会基于多维数据模型进行构建。


业务模型

  这里的业务模型指的是基于某些数据分析和决策支持而建立起来的数据模型,比如我之前介绍过的用户评价模型、关联推荐模型、RFM分析模型等,或者是决策支持的线性规划模型、库存模型等;同时,数据挖掘中前期数据的处理也可以在这里完成。


数据仓库的数据应用

  之前的一篇文章——数据仓库的价值中介绍过数据仓库的四大特性上的价值体现,但数据仓库的价值远不止这样,而且其价值真正的体现是在数据仓库的数据应用上。图中罗列的几种应用并未包含所有,其实一切基于数据相关的扩展性应用都可以基于数据仓库来实现。


报表展示

  报表几乎是每个数据仓库的必不可少的一类数据应用,将聚合数据和多维分析数据展示到报表,提供了最为简单和直观的数据。


即席查询

  理论上数据仓库的所有数据(包括细节数据、聚合数据、多维数据和分析数据)都应该开放即席查询,即席查询提供了足够灵活的数据获取方式,用户可以根据自己的需要查询获取数据,并提供导出到Excel等外部文件的功能。


数据分析

  数据分析大部分可以基于构建的业务模型展开,当然也可以使用聚合的数据进行趋势分析、比较分析、相关分析等,而多维数据模型提供了多维分析的数据基础;同时从细节数据中获取一些样本数据进行特定的分析也是较为常见的一种途径。


数据挖掘

  数据挖掘用一些高级的算法可以让数据展现出各种令人惊讶的结果。数据挖掘可以基于数据仓库中已经构建起来的业务模型展开,但大多数时候数据挖掘会直接从细节数据上入手,而数据仓库为挖掘工具诸如SAS、SPSS等提供数据接口。


元数据管理

  元数据(Meta Date),其实应该叫做解释性数据,即数据的数据。主要记录数据仓库中模型的定义、各层级间的映射关系、监控数据仓库的数据状态及ETL的任务运行状态。一般会通过元数据资料库(Metadata Repository)来统一地存储和管理元数据,其主要目的是使数据仓库的设计、部署、操作和管理能达成协同和一致。

  最后做个Ending,数据仓库本身既不生产数据也不消费数据,只是作为一个中间平台集成化地存储数据;数据仓库实现的难度在于整体架构的构建及ETL的设计,这也是日常管理维护中的重头;而数据仓库的真正价值体现在于基于其的数据应用上,如果没有有效的数据应用也就失去了构建数据仓库的意义。


可能很多人理解的数据仓库就是基于多维数据模型构建,用于OLAP的数据平台,通过上一篇文章——数据仓库的基本架构,我们已经看到数据仓库的应用可能远不止这些。但不得不承认多维数据模型是数据仓库的一大特点,也是数据仓库应用和实现的一个重要的方面,通过在数据的组织和存储上的优化,使其更适用于分析型的数据查询和获取。


多维数据模型的定义和作用

  多维数据模型是为了满足用户从多角度多层次进行数据查询和分析的需要而建立起来的基于事实和维的数据库模型,其基本的应用是为了实现OLAP(Online Analytical Processing)。 BTW: On-Line Transaction Processing联机事务处理过程(OLTP)

  当然,通过多维数据模型的数据展示、查询和获取就是其作用的展现,但其真的作用的实现在于,通过数据仓库可以根据不同的数据需求建立起各类多维模型,并组成数据集市开放给不同的用户群体使用,也就是根据需求定制的各类数据商品摆放在数据集市中供不同的数据消费者进行采购。


多维数据模型实例

  在看实例前,这里需要先了解两个概念:事实表和维表。事实表是用来记录具体事件的,包含了每个事件的具体要素,以及具体发生的事情;维表则是对事实表中事件的要素的描述信息。比如一个事件会包含时间、地点、人物、事件,事实表记录了整个事件的信息,但对时间、地点和人物等要素只记录了一些关键标记,比如事件的主角叫“Michael”,那么Michael到底“长什么样”,就需要到相应的维表里面去查询“Michael”的具体描述信息了。基于事实表和维表就可以构建出多种多维模型,包括星形模型、雪花模型和星座模型。这里不再展开了,解释概念真的很麻烦,而且基于我的理解的描述不一定所有人都能明白,还是直接上实例吧:





  这是一个最简单的星形模型的实例。事实表里面主要包含两方面的信息:维和度量,维的具体描述信息记录在维表,事实表中的维属性只是一个关联到维表的键,并不记录具体信息;度量一般都会记录事件的相应数值,比如这里的产品的销售数量、销售额等。维表中的信息一般是可以分层的,比如时间维的年月日、地域维的省市县等,这类分层的信息就是为了满足事实表中的度量可以在不同的粒度上完成聚合,比如2010年商品的销售额,来自上海市的销售额等。

  还有一点需要注意的是,维表的信息更新频率不高或者保持相对的稳定,例如一个已经建立的十年的时间维在短期是不需要更新的,地域维也是;但是事实表中的数据会不断地更新或增加,因为事件一直在不断地发生,用户在不断地购买商品、接受服务。


多维数据模型的优缺点

  这里所说的多维模型是指基于关系数据库的多维数据模型,其与传统的关系模型相比有着自身的优缺点。

优点:

  多维数据模型最大的优点就是其基于分析优化的数据组织和存储模式。举个简单的例子,电子商务网站的操作数据库中记录的可能是某个时间点,某个用户购买了某个商品,并寄送到某个具体的地址的这种记录的集合,于是我们无法马上获取2010年的7月份到底有多少用户购买了商品,或者2010年的7月份有多少的浙江省用户购买了商品?但是在基于多维模型的基础上,此类查询就变得简单了,只要在时间维上将数据聚合到2010年的7月份,同时在地域维上将数据聚合到浙江省的粒度就可以实现,这个就是OLAP的概念,之后会有相关的文章进行介绍。

缺点:

  多维模型的缺点就是与关系模型相比其灵活性不够,一旦模型构建就很难进行更改。比如一个订单的事实,其中用户可能购买了多种商品,包括了时间、用户维和商品数量、总价等度量,对于关系模型而言如果我们进而需要区分订单中包含了哪些商品,我们只需要另外再建一张表记录订单号和商品的对应关系即可,但在多维模型里面一旦事实表构建起来后,我们无法将事实表中的一条订单记录再进行拆分,于是无法建立以一个新的维度——产品维,只能另外再建个以产品为主题的事实表。

  所以,在建立多维模型之前,我们一般会根据需求首先详细的设计模型,应该包含哪些维和度量,应该让数据保持在哪个粒度上才能满足用户的分析需求

范式:

第一范式:数据库表的字段都是单一属性,不可再分。

第二范式:数据库表中不存在非关键字段对任一候选关键字段的部分函数依赖。

(部分函数依赖指的是存在组合关键字中的某些字段决定非关键字段的情况)。即要求所有属性都依赖于主键。

第三范式:数据库表中不存在非关键字段对任一候选关键字段的传递函数依赖。

范式是向下兼容的。

例如:
学生ID
学生名称
学生部门
课程ID
课程名称
成绩
60100
张三
教育学院,心理系,1班
English_1
英语1
80
1)违反第一范式。因为:学生部门可以分解为:学院,系,班级

2)违反第二范式。因为:关键字段是学生ID和课程ID, 但存在“课程ID”决定课程名称和课程学分。

3)违反第三范式。因为:关键字段是学生ID,但存在可能名称和学分依赖“课程ID”。

星型模型和雪花模型

首先,他们都是由一个事实表和一组维度表组成。

星型模型,也被称为维度建模。

区别在于:

星型模型:维度表直接跟事实表连接,图型像星星。

如区县和地市做为同一维度都在地市表中。

*维度预处理,维度会预先进行分类,排序等预处理。

雪花模型:一些维度表不是直接与事实表连接,而是通过维度表中转,图形像雪花。

例如:



图1:星型模型



图2 雪花模型

从性能来看,星型模型查询性能好。

为了提高性能,可以允许违反第三范式,适当的冗余、隐藏表之间的约束。



维度建模

将商业维度融合到数据模型中,由此得名维度建模。

或者说,为了分析方便(商业应用要求),将同一维度的不同层次的维度(如地市ID,区县ID)都融合到事实表中(如用户宽表)。

维度模型也是星型模型。

它 强调的是先对维度进行预处理,将多个维度集合到一个事实表,形成一个宽表,如上面的用户统一视图。包含了20多个维度。这样可以组合各维度,形成灵活的报表查询。




对于星型模型和雪花模型的总结如下(星形模型(Star Schema)和雪花模型(Snowflake Schema)):
1、性能
星型模型是一种非正规化的结构,多维数据集的每一个维度都直接与事实表相连接,不存在渐变维度,所以数据有一定的冗余,但是因为这种原因,所以在大多数统计查询的情况下,星型模型的效率要更高。(星形模型实用的是反规范化数据。)

2、存储
雪花模型使用的是规范化数据,也就是说数据在数据库内部是组织好的,以便消除冗余,因此它能够有效地减少数据量。所以雪花的星型的主要区别在于前者省空间,后者节省(查询)时间

3、开发过程
雪花模型加载数据集市,因此ETL操作在设计上更加复杂,而且由于附属模型的限制,不能并行化。

星形模型加载维度表,不需要再维度之间添加附属模型,因此ETL就相对简单,而且可以实现高度的并行化。

4.适合场景

雪花模型使得维度分析更加容易,比如“针对特定的广告主,有哪些客户或者公司是在线的?”星形模型用来做指标分析更适合,比如“给定的一个客户他们的收入是多少?”
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签:  数据仓库