您的位置:首页 > Web前端

Batch Normalization Caffe版实现解析

2017-02-22 17:21 155 查看
建议先看论文Batch Normalization: Accelerating Deep Network Training by

Reducing Internal Covariate Shift,这样会对本文有更好的理解;

同时使用Batch Normalization的GoogLENet也被称为Inception v2;

Batch Normalization Caffe版实现解析

BatchNormParameter有三个参数:

message BatchNormParameter {
// If false, accumulate global mean/variance values via a moving average. If
// true, use those accumulated values instead of computing mean/variance
// across the batch.
optional bool use_global_stats = 1;
// How much does the moving average decay each iteration?
optional float moving_average_fraction = 2 [default = .999];
// Small value to add to the variance estimate so that we don't divide by
// zero.
optional float eps = 3 [default = 1e-5];
}


其中use_global_stats 是指Train还是Test,如果为True,那么就是指Test;

其中eps 是指公式中的小量,防止除以0;

其中moving_average_fraction 指的是mini-batch时每次叠加mean的时候的衰退值;

LayerSetUp模块:

template <typename Dtype>
void BatchNormLayer<Dtype>::LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
//获取BatchNormParameter参数列表
BatchNormParameter param = this->layer_param_.batch_norm_param();
//得到moving_average_fraction参数
moving_average_fraction_ = param.moving_average_fraction();
//赋值use_global_stats_,如果为Test,则为True
use_global_stats_ = this->phase_ == TEST;
//如果参数列表里面定义了use_global_stats,那么从参数列表里面获取
if (param.has_use_global_stats())
use_global_stats_ = param.use_global_stats();
//计算channels_
if (bottom[0]->num_axes() == 1)
channels_ = 1;
else
channels_ = bottom[0]->shape(1);
//从参数列表里面获取eps小量
eps_ = param.eps();
//初始化三个blob,其中前两个blob的大小为channels_,第三个blob的大小为1.
if (this->blobs_.size() > 0) {
LOG(INFO) << "Skipping parameter initialization";
} else {
this->blobs_.resize(3);
vector<int> sz;
sz.push_back(channels_);
this->blobs_[0].reset(new Blob<Dtype>(sz));
this->blobs_[1].reset(new Blob<Dtype>(sz));
sz[0]=1;
this->blobs_[2].reset(new Blob<Dtype>(sz));
//初始化三个Blob的值为0
for (int i = 0; i < 3; ++i) {
caffe_set(this->blobs_[i]->count(), Dtype(0),
this->blobs_[i]->mutable_cpu_data());
}
}
}


Reshape模块:

void BatchNormLayer<Dtype>::Reshape(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
if (bottom[0]->num_axes() >= 1)
CHECK_EQ(bottom[0]->shape(1), channels_);
//输出的形状和输入的形状相同
top[0]->ReshapeLike(*bottom[0]);
//定义mean_,variance_,temp_,x_norm_,batch_sum_multiplier_的形状
vector<int> sz;
sz.push_back(channels_);
mean_.Reshape(sz);
variance_.Reshape(sz);
temp_.ReshapeLike(*bottom[0]);
x_norm_.ReshapeLike(*bottom[0]);
sz[0]=bottom[0]->shape(0);
//batch_sum_multiplier_的形状为Nx1x1x1
batch_sum_multiplier_.Reshape(sz);
//定义spatial_sum_multiplier_的形状
int spatial_dim = bottom[0]->count()/(channels_*bottom[0]->shape(0));
if (spatial_sum_multiplier_.num_axes() == 0 ||
spatial_sum_multiplier_.shape(0) != spatial_dim) {
sz[0] = spatial_dim;
spatial_sum_multiplier_.Reshape(sz);
Dtype* multiplier_data = spatial_sum_multiplier_.mutable_cpu_data();
//初始化spatial_sum_multiplier_中的值为1
caffe_set(spatial_sum_multiplier_.count(), Dtype(1), multiplier_data);
}
//定义num_by_chans_的形状为channels_*bottom[0]->shape(0)
int numbychans = channels_*bottom[0]->shape(0);
if (num_by_chans_.num_axes() == 0 ||
num_by_chans_.shape(0) != numbychans) {
sz[0] = numbychans;
num_by_chans_.Reshape(sz);
//初始化batch_sum_multiplier_为1
caffe_set(batch_sum_multiplier_.count(), Dtype(1),
batch_sum_multiplier_.mutable_cpu_data());
}
}


Forward_cpu模块:

void BatchNormLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
//输入blob的数据指针,const变量
const Dtype* bottom_data = bottom[0]->cpu_data();
//输出blob的数据指针,这个是我们要计算的
Dtype* top_data = top[0]->mutable_cpu_data();
//batch的数量NCHW中的N
int num = bottom[0]->shape(0);
//指的是NCHW中H*W的值
int spatial_dim = bottom[0]->count()/(bottom[0]->shape(0)*channels_);
//如果bottom和top的值不相同,就把bottom中的值赋给top
if (bottom[0] != top[0]) {
caffe_copy(bottom[0]->count(), bottom_data, top_data);
}
//如果是使用已经计算好的mean和variance,其中mean保存在blobs_[0]中,variance保存在blobs_[1]中
if (use_global_stats_) {
// use the stored mean/variance estimates.
const Dtype scale_factor = this->blobs_[2]->cpu_data()[0] == 0 ?
0 : 1 / this->blobs_[2]->cpu_data()[0];
caffe_cpu_scale(variance_.count(), scale_factor,
this->blobs_[0]->cpu_data(), mean_.mutable_cpu_data());
caffe_cpu_scale(variance_.count(), scale_factor,
this->blobs_[1]->cpu_data(), variance_.mutable_cpu_data());
} else {//如果没有提供mean和variance,我们需要自己去计算
// compute mean
//这个矩阵与向量相乘,目的是计算每个feature map的数值和,然后在除以1./(num*spatial_dim)
//bottom_data: (channels_*num) x (spatial_dim)
//spatial_sum_multiplier: spatial_dim x 1
//alpha : 1./(num*spatial_dim); beta : 0
//num_by_chans = alpha * (bottom_data x spatial_sum_multiplier) + beta * num_by_chans
//其中spatial_sum_multiplier的值都为1
caffe_cpu_gemv<Dtype>(CblasNoTrans, channels_ * num, spatial_dim,
1. / (num * spatial_dim), bottom_data,
spatial_sum_multiplier_.cpu_data(), 0.,
num_by_chans_.mutable_cpu_data());
//注意关键字是CblasTrans!!
//num_by_chans_ : channels_ x num;
//batch_sum_multiplier_ : num x 1;
//mean_ = 1. x (num_by_chans_ x batch_sum_multiplier_)
//mean_ : channels_ x 1
//计算得到对应channels的平均值,这也解释了为什么之前要除以1./(num*spatial_dim)
//而不是仅除以1./spatial_dim,这样减少了计算量
caffe_cpu_gemv<Dtype>(CblasTrans, num, channels_, 1.,
num_by_chans_.cpu_data(), batch_sum_multiplier_.cpu_data(), 0.,
mean_.mutable_cpu_data());
}

// subtract mean
//batch_sum_multiplier_ : num x 1
//mean_ : 1 x channels_
//num_by_chans_ : num x channels_
//num_by_chans_ :
//         channels_
// -----------------------
// mean00 mean01 ... mean0x
// ........................
// ........................
// meany0 meany1 ... meanyx
// ------------------------
//where x = channels and y = num
caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, num, channels_, 1, 1,
batch_sum_multiplier_.cpu_data(), mean_.cpu_data(), 0.,
num_by_chans_.mutable_cpu_data());
//num_by_chans_: (channels_ * num) x 1
//spatial_sum_multiplier_ : 1 x spatial_dim (all values are 1)
//top_data = 1 x top_data + (-1) x (num_by_chans_ x spatial_sum_multiplier_)
//这里num_by_chans_ x spatial_sum_multiplier_求得的是每个值对应的平均值
//最后的top_data保存的就是每个值减去对应channel的均值后的结果
caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, channels_ * num,
spatial_dim, 1, -1, num_by_chans_.cpu_data(),
spatial_sum_multiplier_.cpu_data(), 1., top_data);

if (!use_global_stats_) {
// compute variance using var(X) = E((X-EX)^2)
//计算X-E(X)的平方,并把结果保存在temp_中
caffe_powx(top[0]->count(), top_data, Dtype(2),
temp_.mutable_cpu_data());  // (X-EX)^2
//这步计算的是对应每个channel的(X-EX)^2的和,同时除以1. / (num * spatial_dim)
//这步和计算mean的时候很相似
caffe_cpu_gemv<Dtype>(CblasNoTrans, channels_ * num, spatial_dim,
1. / (num * spatial_dim), temp_.cpu_data(),
spatial_sum_multiplier_.cpu_data(), 0.,
num_by_chans_.mutable_cpu_data());
//这步计算的是对应每个batch的(X-EX)^2的和,此时不需要再除以num了,因为上一步已经除以了
//这步和计算mean的时候很相似
//这样就得到variance了
caffe_cpu_gemv<Dtype>(CblasTrans, num, channels_, 1.,
num_by_chans_.cpu_data(), batch_sum_multiplier_.cpu_data(), 0.,
variance_.mutable_cpu_data());  // E((X_EX)^2)

// compute and save moving average
//blobs_[2]中只有一个值,最开始值为0
//然后每次blobs_[2] = (moving_average_fraction_ * blobs_[2])+ 1
this->blobs_[2]->mutable_cpu_data()[0] *= moving_average_fraction_;
this->blobs_[2]->mutable_cpu_data()[0] += 1;
//caffe_cpu_axpby : Y = alpha * X + b * Y
//blobs_[0] = 1 * mean_ + moving_average_fraction_ * blobs_[0]
//最开始blobs_[0]中的所有值为0
//这一步是用来保存并叠加每一次计算得到的mean值,
//结果保存在blob_[0]中
caffe_cpu_axpby(mean_.count(), Dtype(1), mean_.cpu_data(),
moving_average_fraction_, this->blobs_[0]->mutable_cpu_data());
// m = batch_num * feature_map_num
int m = bottom[0]->count()/channels_;
//blobs_[1] = m/(m-1) * variance_ + moving_average_fraction_ * blobs_[1]
Dtype bias_correction_factor = m > 1 ? Dtype(m)/(m-1) : 1;
caffe_cpu_axpby(variance_.count(), bias_correction_factor,
variance_.cpu_data(), moving_average_fraction_,
this->blobs_[1]->mutable_cpu_data());
}

// normalize variance
//计算variance_ + eps_
caffe_add_scalar(variance_.count(), eps_, variance_.mutable_cpu_data());
//计算sqrt(variance_ + eps_)
caffe_powx(variance_.count(), variance_.cpu_data(), Dtype(0.5),
variance_.mutable_cpu_data());

// replicate variance to input size
//拓展variance_到每个batch上
caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, num, channels_, 1, 1,
batch_sum_multiplier_.cpu_data(), variance_.cpu_data(), 0.,
num_by_chans_.mutable_cpu_data());
//拓展variance_到每个batch x feature_map上
caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, channels_ * num,
spatial_dim, 1, 1., num_by_chans_.cpu_data(),
spatial_sum_multiplier_.cpu_data(), 0., temp_.mutable_cpu_data());
//这里 top_data = top_data / temp_
caffe_div(temp_.count(), top_data, temp_.cpu_data(), top_data);
// TODO(cdoersch): The caching is only needed because later in-place layers
//                 might clobber the data.  Can we skip this if they won't?
//把结果缓存在x_norm_中,之后其他操作会用到这个值,比如说反向传播
caffe_copy(x_norm_.count(), top_data,
x_norm_.mutable_cpu_data());
}


这里需要解释一下blobs_的计算方式,我们是在Train的过程中,完成计算blobs_的,而我们训练的过程并不是一次Forward就结束,而是从总样本中抽取mini-batch个样本,进行多次Forward,这样的话我们其实是需要考虑每次计算得到的mean和variance,我们瞬间能想到的就是累加,caffe这里的算法并不是简简单单的将每次计算的mean和variance累加,而是把前一次计算的mean和variance的影响减小(乘以一个小于1的变量),再加上本次计算的结果;

这里我们就计算完成Batch Normalization的前向(Forward)过程了。

Backward_cpu模块:

对于反向传播模块,我们先推导一下公式:

σEσvar=∑miσEσyiσyiσvar=∑miσEσyi(xi−mean)(−12)(var+eps)−32

σEσmean=∑miσEσyi(σyiσmean+σyiσvarσvarσmean)=∑miσEσyi−1var+eps√

σEσxi=σEσyi1var+eps√+σEσvarσvarσxi+σEσmeanσmeanσxi=σEσyi1var+eps√+σEσvar2m(xi−mean)+σEσmean1m

=1var+eps√(σEσyi−1m∑miσEσyi−(1m∑miσEσyiyi)yi)

=1var+eps√(σEσyi−mean(σEσyi)−mean(σEσyi.yi).yi)

void BatchNormLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down,
const vector<Blob<Dtype>*>& bottom) {
const Dtype* top_diff;
if (bottom[0] != top[0]) {
top_diff = top[0]->cpu_diff();
} else {
caffe_copy(x_norm_.count(), top[0]->cpu_diff(), x_norm_.mutable_cpu_diff());
top_diff = x_norm_.cpu_diff();
}
Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
if (use_global_stats_) {
caffe_div(temp_.count(), top_diff, temp_.cpu_data(), bottom_diff);
return;
}
const Dtype* top_data = x_norm_.cpu_data();
//batch size
int num = bottom[0]->shape()[0];
//feature map的大小
int spatial_dim = bottom[0]->count()/(bottom[0]->shape(0)*channels_);
// if Y = (X-mean(X))/(sqrt(var(X)+eps)), then
//
// dE(Y)/dX =
//   (dE/dY - mean(dE/dY) - mean(dE/dY \cdot Y) \cdot Y)
//     ./ sqrt(var(X) + eps)
//
// where \cdot and ./ are hadamard product and elementwise division,
// respectively, dE/dY is the top diff, and mean/var/sum are all computed
// along all dimensions except the channels dimension.  In the above
// equation, the operations allow for expansion (i.e. broadcast) along all
// dimensions except the channels dimension where required.

// sum(dE/dY \cdot Y)
caffe_mul(temp_.count(), top_data, top_diff, bottom_diff);
caffe_cpu_gemv<Dtype>(CblasNoTrans, channels_ * num, spatial_dim, 1.,
bottom_diff, spatial_sum_multiplier_.cpu_data(), 0.,
num_by_chans_.mutable_cpu_data());
caffe_cpu_gemv<Dtype>(CblasTrans, num, channels_, 1.,
num_by_chans_.cpu_data(), batch_sum_multiplier_.cpu_data(), 0.,
mean_.mutable_cpu_data());

// reshape (broadcast) the above
caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, num, channels_, 1, 1,
batch_sum_multiplier_.cpu_data(), mean_.cpu_data(), 0.,
num_by_chans_.mutable_cpu_data());
caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, channels_ * num,
spatial_dim, 1, 1., num_by_chans_.cpu_data(),
spatial_sum_multiplier_.cpu_data(), 0., bottom_diff);

// sum(dE/dY \cdot Y) \cdot Y
caffe_mul(temp_.count(), top_data, bottom_diff, bottom_diff);

// sum(dE/dY)-sum(dE/dY \cdot Y) \cdot Y
caffe_cpu_gemv<Dtype>(CblasNoTrans, channels_ * num, spatial_dim, 1.,
top_diff, spatial_sum_multiplier_.cpu_data(), 0.,
num_by_chans_.mutable_cpu_data());
caffe_cpu_gemv<Dtype>(CblasTrans, num, channels_, 1.,
num_by_chans_.cpu_data(), batch_sum_multiplier_.cpu_data(), 0.,
mean_.mutable_cpu_data());
// reshape (broadcast) the above to make
// sum(dE/dY)-sum(dE/dY \cdot Y) \cdot Y
caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, num, channels_, 1, 1,
batch_sum_multiplier_.cpu_data(), mean_.cpu_data(), 0.,
num_by_chans_.mutable_cpu_data());
caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, num * channels_,
spatial_dim, 1, 1., num_by_chans_.cpu_data(),
spatial_sum_multiplier_.cpu_data(), 1., bottom_diff);

// dE/dY - mean(dE/dY)-mean(dE/dY \cdot Y) \cdot Y
caffe_cpu_axpby(temp_.count(), Dtype(1), top_diff,
Dtype(-1. / (num * spatial_dim)), bottom_diff);

// note: temp_ still contains sqrt(var(X)+eps), computed during the forward
// pass.
caffe_div(temp_.count(), bottom_diff, temp_.cpu_data(), bottom_diff);
}
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息