您的位置:首页 > 其它

[机器学习]详解分类算法--决策树算法

2017-02-18 20:30 344 查看


前言

算法的有趣之处在于解决问题,否则仅仅立足于理论,便毫无乐趣可言;

不过算法的另一特点就是容易吓唬人,又是公式又是图标啥的,如果一个人数学理论知识过硬,静下心来看,都是可以容易理解的,纸老虎一个,不过这里的算法主要指的应用型算法;但是那些证明和研究算法理论堪称大牛.



现在给大家介绍一下分类算法中最常用的一种算法–决策树算法

决策树原理

决策树(decision tree)是一个树结构(可以是二叉树或非二叉树)。其每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出,而每个叶节点存放一个类别。使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出分支,直到到达叶子节点,将叶子节点存放的类别作为决策结果。

决策树(Decision Tree)是一种简单但是广泛使用的分类器。通过训练数据构建决策树,可以高效的对未知的数据进行分类。

决策树优点

1)决策树模型可以读性好,具有描述性,有助于人工分析;

2)效率高,决策树只需要一次构建,反复使用,每一次预测的最大计算次数不超过决策树的深度。

那么如何进行预测呢?

示例

通俗来说,决策树分类的思想类似于找对象。现想象一个女孩的母亲要给这个女孩介绍男朋友,于是有了下面的对话:

女儿:多大年纪了?

母亲:26。

女儿:长的帅不帅?

母亲:挺帅的。

女儿:收入高不?

母亲:不算很高,中等情况。

女儿:是公务员不?

母亲:是,在税务局上班呢。

女儿:那好,我去见见。

这个女孩的决策过程就是典型的分类树决策。相当于通过年龄、长相、收入和是否公务员对将男人分为两个类别:见和不见。假设这个女孩对男人的要求是:30岁以下、长相中等以上并且是高收入者或中等以上收入的公务员,那么这个可以用下图表示女孩的决策逻辑(声明:此决策树纯属为了写文章而YY的产物,没有任何根据,也不代表任何女孩的择偶倾向,请各位女同胞莫质问我^_^):




分析

上图完整表达了这个女孩决定是否见一个约会对象的策略,其中绿色节点表示判断条件,橙色节点表示决策结果,箭头表示在一个判断条件在不同情况下的决策路径,图中红色箭头表示了上面例子中女孩的决策过程。

这幅图基本可以算是一颗决策树,说它“基本可以算”是因为图中的判定条件没有量化,如收入高中低等等,还不能算是严格意义上的决策树,如果将所有条件量化,则就变成真正的决策树了。

好下面来介绍一下决策树设计的一般步骤:

基本步骤

决策树构建的基本步骤如下:

开始,所有记录看作一个节点

遍历每个变量的每一种分割方式,找到最好的分割点

分割成两个节点N1和N2

对N1和N2分别继续执行2-3步,直到每个节点足够“纯”为止

决策树的变量类型:

1) 数字型(Numeric):变量类型是整数或浮点数,如前面例子中的“年收入”。用“>=”,“>”,“<”或“<=”作为分割条件(排序后,利用已有的分割情况,可以优化分割算法的时间复杂度)。

2) 名称型(Nominal):类似编程语言中的枚举类型,变量只能重有限的选项中选取,比如前面例子中的“婚姻情况”,只能是“单身”,“已婚”或“离婚”。使用“=”来分割。

如何评估分割点的好坏?如果一个分割点可以将当前的所有节点分为两类,使得每一类都很“纯”,也就是同一类的记录较多,那么就是一个好分割点。比如上面的例子,“拥有房产”,可以将记录分成了两类,“是”的节点全部都可以偿还债务,非常“纯”;“否”的节点,可以偿还贷款和无法偿还贷款的人都有,不是很“纯”,但是两个节点加起来的纯度之和与原始节点的纯度之差最大,所以按照这种方法分割。构建决策树采用贪心算法,只考虑当前纯度差最大的情况作为分割点。

在看下面这个例子:



上表根据历史数据,记录已有的用户是否可以偿还债务,以及相关的信息。通过该数据,构建的决策树如下:



比如新来一个用户:无房产,单身,年收入55K,那么根据上面的决策树,可以预测他无法偿还债务(蓝色虚线路径)。从上面的决策树,还可以知道是否拥有房产可以很大的决定用户是否可以偿还债务,对借贷业务具有指导意义。

量化纯度

前面讲到,决策树是根据“纯度”来构建的,如何量化纯度呢?这里介绍三种纯度计算方法。如果记录被分为n类,每一类的比例P(i)=第i类的数目/总数目。还是拿上面的例子,10个数据中可以偿还债务的记录比例为P(1) = 7/10 = 0.7,无法偿还的为P(2) = 3/10 = 0.3,N = 2。

Gini不纯度



熵(Entropy)



错误率



上面的三个公式均是值越大,表示越 “不纯”,越小表示越“纯”。三种公式只需要取一种即可,实践证明三种公司的选择对最终分类准确率的影响并不大,一般使用熵公式。

纯度差,也称为信息增益(Information Gain),公式如下:



其中,I代表不纯度(也就是上面三个公式的任意一种),K代表分割的节点数,一般K = 2。vj表示子节点中的记录数目。上面公式实际上就是当前节点的不纯度减去子节点不纯度的加权平均数,权重由子节点记录数与当前节点记录数的比例决定。

停止条件

决策树的构建过程是一个递归的过程,所以需要确定停止条件,否则过程将不会结束。一种最直观的方式是当每个子节点只有一种类型的记录时停止,但是这样往往会使得树的节点过多,导致过拟合问题(Overfitting)。另一种可行的方法是当前节点中的记录数低于一个最小的阀值,那么就停止分割,将max(P(i))对应的分类作为当前叶节点的分类。

过渡拟合

采用上面算法生成的决策树在事件中往往会导致过滤拟合。也就是该决策树对训练数据可以得到很低的错误率,但是运用到测试数据上却得到非常高的错误率。过渡拟合的原因有以下几点:

噪音数据:

训练数据中存在噪音数据,决策树的某些节点有噪音数据作为分割标准,导致决策树无法代表真实数据。

缺少代表性数据:

训练数据没有包含所有具有代表性的数据,导致某一类数据无法很好的匹配,这一点可以通过观察混淆矩阵(Confusion Matrix)分析得出。

多重比较(Mulitple Comparition):

举个列子,股票分析师预测股票涨或跌。假设分析师都是靠随机猜测,也就是他们正确的概率是0.5。每一个人预测10次,那么预测正确的次数在8次或8次以上的概率为



只有5%左右,比较低。但是如果50个分析师,每个人预测10次,选择至少一个人得到8次或以上的人作为代表,那么概率:



概率十分大,随着分析师人数的增加,概率无限接近1。但是,选出来的分析师其实是打酱油的,他对未来的预测不能做任何保证。上面这个例子就是多重比较。这一情况和决策树选取分割点类似,需要在每个变量的每一个值中选取一个作为分割的代表,所以选出一个噪音分割标准的概率是很大的。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签:  机器学习 算法 应用