您的位置:首页 > 其它

hashCode和identityHashCode底层是怎么生成的

2017-02-13 21:16 337 查看
前言:在工作中使用==埋下的坑这篇博文的最后,我想到了两个问题,其中一个是——为什么 int int1=99;int int2=99;int1和int2的identityHashCode是一样的哪?为什么float float1=99;float float2=99;float1和float2的identityHashCode是不一样的哪?那就需要了解identityHashCode的生成规则了,需要了解一下java的内存地址分配规则了。

今天的事情不多,我就查了查资料,找到了对应的底层实现的方式,并且也验证了hashCode和identityHashCode 的关系这篇博文中的部分观点。

本文将根据openJDK 6源码,向你展示Java语言中的Object对象的hashCode() 方法和System对象的identityHashCode()方法的底层实现的神秘面纱,我将一步一步地向你介绍Java Object对象的hashCode() 方法和System对象的identityHashCode()方法到底底层调用了什么函数。为了更好地了解这个过程,你可以自己下载openJDK 6 源码,亲自查看和跟踪源码,了解Object对象的hashCode() 方法和System对象的identityHashCode()方法的生成过程:

openJDK 6 下载地址:http://download.java.net/openjdk/jdk6/

1:java.lang.System.java类的identityHashCode()方法如下所示——在 openjdk-6-src-b27-26_oct_2012\jdk\src\share\classes\java\lang 目录下,它是一个静态的本地方法

/**
* Returns the same hash code for the given object as
* would be returned by the default method hashCode(),
* whether or not the given object's class overrides
* hashCode().
* The hash code for the null reference is zero.
*
* @param x object for which the hashCode is to be calculated
* @return  the hashCode
* @since   JDK1.1
*/
public static native int identityHashCode(Object x);


2:java.lang.System.java类的identityHashCode()方法的本地c语言的实现——System.c——在 openjdk-6-src-b27-26_oct_2012\jdk\src\share\native\java\lang 目录下,他调用的是JVM_IHashCode()方法

JNIEXPORT jint JNICALL
Java_java_lang_System_identityHashCode(JNIEnv *env, jobject this, jobject x)
{
return JVM_IHashCode(env, x);
}


3:JVM_IHashCode()方法在 openjdk-6-src-b27-26_oct_2012\hotspot\src\share\vm\prims\jvm.cpp文件中,它又调用ObjectSynchronizer::FastHashCode()方法

// java.lang.Object ///////////////////////////////////////////////

JVM_ENTRY(jint, JVM_IHashCode(JNIEnv* env, jobject handle))
JVMWrapper("JVM_IHashCode");
// as implemented in the classic virtual machine; return 0 if object is NULL
return handle == NULL ? 0 : ObjectSynchronizer::FastHashCode (THREAD, JNIHandles::resolve_non_null(handle)) ;
JVM_END


4:ObjectSynchronizer::FastHashCode()方法在 openjdk-6-src-b27-26_oct_2012\hotspot\src\share\vm\runtime\synchronizer.cpp文件中,它是最终实现hashCode()和identityHashCode()方法的方法,核心的实现代码如下,我们从这里也可以看得到,还是比较复杂的,并不是简单取一个对象的引用地址那么简单。

//
intptr_t ObjectSynchronizer::FastHashCode (Thread * Self, oop obj) {
if (UseBiasedLocking) {
// NOTE: many places throughout the JVM do not expect a safepoint
// to be taken here, in particular most operations on perm gen
// objects. However, we only ever bias Java instances and all of
// the call sites of identity_hash that might revoke biases have
// been checked to make sure they can handle a safepoint. The
// added check of the bias pattern is to avoid useless calls to
// thread-local storage.
if (obj->mark()->has_bias_pattern()) {
// Box and unbox the raw reference just in case we cause a STW safepoint.
Handle hobj (Self, obj) ;
// Relaxing assertion for bug 6320749.
assert (Universe::verify_in_progress() ||
!SafepointSynchronize::is_at_safepoint(),
"biases should not be seen by VM thread here");
BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
obj = hobj() ;
assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
}
}

// hashCode() is a heap mutator ...
// Relaxing assertion for bug 6320749.
assert (Universe::verify_in_progress() ||
!SafepointSynchronize::is_at_safepoint(), "invariant") ;
assert (Universe::verify_in_progress() ||
Self->is_Java_thread() , "invariant") ;
assert (Universe::verify_in_progress() ||
((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;

ObjectMonitor* monitor = NULL;
markOop temp, test;
intptr_t hash;
markOop mark = ReadStableMark (obj);

// object should remain ineligible for biased locking
assert (!mark->has_bias_pattern(), "invariant") ;

if (mark->is_neutral()) {
hash = mark->hash();              // this is a normal header
if (hash) {                       // if it has hash, just return it
return hash;
}
hash = get_next_hash(Self, obj);  // allocate a new hash code
temp = mark->copy_set_hash(hash); // merge the hash code into header
// use (machine word version) atomic operation to install the hash
test = (markOop) Atomic::cmpxchg_ptr(temp, obj->mark_addr(), mark);
if (test == mark) {
return hash;
}
// If atomic operation failed, we must inflate the header
// into heavy weight monitor. We could add more code here
// for fast path, but it does not worth the complexity.
} else if (mark->has_monitor()) {
monitor = mark->monitor();
temp = monitor->header();
assert (temp->is_neutral(), "invariant") ;
hash = temp->hash();
if (hash) {
return hash;
}
// Skip to the following code to reduce code size
} else if (Self->is_lock_owned((address)mark->locker())) {
temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
assert (temp->is_neutral(), "invariant") ;
hash = temp->hash();              // by current thread, check if the displaced
if (hash) {                       // header contains hash code
return hash;
}
// WARNING:
//   The displaced header is strictly immutable.
// It can NOT be changed in ANY cases. So we have
// to inflate the header into heavyweight monitor
// even the current thread owns the lock. The reason
// is the BasicLock (stack slot) will be asynchronously
// read by other threads during the inflate() function.
// Any change to stack may not propagate to other threads
// correctly.
}

// Inflate the monitor to set hash code
monitor = ObjectSynchronizer::inflate(Self, obj);
// Load displaced header and check it has hash code
mark = monitor->header();
assert (mark->is_neutral(), "invariant") ;
hash = mark->hash();
if (hash == 0) {
hash = get_next_hash(Self, obj);
temp = mark->copy_set_hash(hash); // merge hash code into header
assert (temp->is_neutral(), "invariant") ;
test = (markOop) Atomic::cmpxchg_ptr(temp, monitor, mark);
if (test != mark) {
// The only update to the header in the monitor (outside GC)
// is install the hash code. If someone add new usage of
// displaced header, please update this code
hash = test->hash();
assert (test->is_neutral(), "invariant") ;
assert (hash != 0, "Trivial unexpected object/monitor header usage.");
}
}
// We finally get the hash
return hash;
}


5:java.lang.Object.java类的hashCode()方法如下所示——在 openjdk-6-src-b27-26_oct_2012\jdk\src\share\classes\java\lang 目录下,它是一个本地方法

/**
* Returns a hash code value for the object. This method is
* supported for the benefit of hashtables such as those provided by
* <code>java.util.Hashtable</code>.
* <p>
* The general contract of <code>hashCode</code> is:
* <ul>
* <li>Whenever it is invoked on the same object more than once during
*     an execution of a Java application, the <tt>hashCode</tt> method
*     must consistently return the same integer, provided no information
*     used in <tt>equals</tt> comparisons on the object is modified.
*     This integer need not remain consistent from one execution of an
*     application to another execution of the same application.
* <li>If two objects are equal according to the <tt>equals(Object)</tt>
*     method, then calling the <code>hashCode</code> method on each of
*     the two objects must produce the same integer result.
* <li>It is <em>not</em> required that if two objects are unequal
*     according to the {@link java.lang.Object#equals(java.lang.Object)}
*     method, then calling the <tt>hashCode</tt> method on each of the
*     two objects must produce distinct integer results.  However, the
*     programmer should be aware that producing distinct integer results
*     for unequal objects may improve the performance of hashtables.
* </ul>
* <p>
* As much as is reasonably practical, the hashCode method defined by
* class <tt>Object</tt> does return distinct integers for distinct
* objects. (This is typically implemented by converting the internal
* address of the object into an integer, but this implementation
* technique is not required by the
* Java<font size="-2"><sup>TM</sup></font> programming language.)
*
* @return  a hash code value for this object.
* @see     java.lang.Object#equals(java.lang.Object)
* @see     java.util.Hashtable
*/
public native int hashCode();


6:java.lang.Object.java类的hashCode()方法的本地c语言的实现——Object.c——在 openjdk-6-src-b27-26_oct_2012\jdk\src\share\native\java\lang 目录下,他调用的也是JVM_IHashCode()方法,由此可见我们在hashCode和identityHashCode 的关系中的观点,在此处也得到了再次的验证

static JNINativeMethod methods[] = {
{"hashCode",    "()I",                    (void *)&JVM_IHashCode},
{"wait",        "(J)V",                   (void *)&JVM_MonitorWait},
{"notify",      "()V",                    (void *)&JVM_MonitorNotify},
{"notifyAll",   "()V",                    (void *)&JVM_MonitorNotifyAll},
{"clone",       "()Ljava/lang/Object;",   (void *)&JVM_Clone},
};


7:如上所示,经过一步步的分析,我们已经了解到了 hashCode和identityHashCode底层到底是怎么生成的,不过有些事情这里要在下面补充一下

7-1:本地方法是什么东西?

本地方法是指用本地程序设计语言,比如:c或者c++,来编写的特殊方法。在java语言中通过native关键字来修饰,通过Java Native Interface(JNI)技术来支持java应用程序来调用本地方法。

7-2:本地方法的特点是什么?

本地方法在本地语言中可以执行任意的计算任务,并返回到java程序设计语言中。

7-3:本地方法的用途是有哪些?

从历史上看本地方法主要有三种用途。

1)提供“访问特定于平台的机制”的能力,比如:访问注册表和文件锁。

2)提供访问遗留代码库的能力,从而可以访问遗留数据。

3)可以通过本地语言,编写应用程序中注重性能的部分,以提高系统的性能。

7-4:使用本地方法的优缺点是什么?

总体来讲使用本地方需要格外的谨慎,因为本地代码中的一个bug就有可能破坏掉整个应用程序。

使用本地代码的优点是:提高系统性能,访问特定于平台的机制。

使用本地代码的缺点是:

1)因为本地语言是不安全的,所以,使用本地方法的应用程序也不能免受内存毁坏错误的影响。

2)因为本地语言是与平台相关的,使用本地方法的应用程序也不再是可自由移植的。

3)使用本地方法的应用程序更难调试

4)在进入和退出本地代码时,需要相关的固定开销,所以,如果本地代码时做的少量的工作,本地方法就可能降低性能。

5)需要“胶合代码”的本地方法编写起来的单调乏味,并且难以阅读。

8:参考

Java语言中Object对象的hashCode()取值的底层算法是怎样实现的?

Effective Java 中文第二版
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: